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Abstract. This is a follow-up paper to the report [R. T. Živaljević and D. R. Ži-
valjević, Icosahedron and a paper dragon, The Teaching of Mathematics 28, 2 (2025),
118–124] on an animated mathematical experiment (simulation) involving the icosahe-
dron. The basic idea of the experiment was to create the simplest possible combina-
torial geometric environment, for studying the mathematics behind the morphogenesis
of icosahedral shapes in nature. Our objective is to present, in the form accessible to
students, teachers, and non-specialists, some of the not so well-known facts about the
geometry and combinatorics of the icosahedron, related to this mathematical simula-
tion, emphasising the unity of mathematics and the importance of the multidisciplinary
approach in mathematical education.
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1. Introduction

The animation used in this experiment is one of the videos created within the
project “Živa matematika” (Math Alive), a project for popularizing mathematics
sponsored by the Mathematical Institute SASA (Belgrade) and the Center for the
Promotion of Science.

More details about this project can be found in [8]. The author and sole
designer of all animations was the second author of [9]1 while the general idea and
the overall mathematical expertise were provided by the first author. The original
motivation was to produce an attractive animation with rich mathematical content.
However, it surpassed the expectation as it evolved [7, 8] into a project, connecting
and popularizing methods and ideas from discrete and computational geometry
with mathematical applications in biology and chemistry.

1.1. The object of the paper (in a nutshell)

Recall that the Paper Dragon [9] (depicted in Figure 1), the main character of
the animation “Icosahedron Avatars” [7], is simply a paper strip, divided in twenty
numbered, triangular regions. Paper dragon is the initial state of a folding process
(metamorphosis) going through several stages, including the stage of an icosahedron

1Dušan Živaljević (1984–2014)
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Figure 1. Paper dragon: the initial state of the animation

and the stage of a great icosahedron, see [9] for a detailed description and/or the
(self-explanatory) animation [7].

This folding process of the paper dragon resembles, to some extent, the meta-
morphoses (life cycles) of insects, such as a caterpillar becoming a butterfly, etc. It
may be interesting (for a mathematician) to follow this distant biological analogy,
especially in light of the fact that protein shells (capsids) of many viruses have the
icosahedral form.

It may come as a surprise that, in spite of their different appearances, the
icosahedron and the great icosahedron are actually isomorphic, as abstract simpli-
cial complexes (see Corollary 10). This isomorphism is a consequence of a stronger
statement (Theorem 9), which exposes a rich algebraic structure behind the beau-
tiful geometry of these mathematical objects.

Theorem 9 is also a basis for another result (Theorem 12) which says that
each unfolding of an icosahedron is an unfolding of the associated great icosahe-
dron (and vice versa). As an amusing consequence we obtain that, side by side
with the original animation (corresponding to the paper dragon), there are 43380
similar animations, exhibiting metamorphoses of the icosahedron into the great
icosahedron, where 43380 is the number of spanning trees in the one skeleton of
these polyhedra.

The isomorphism from Corollary 10, expressing the isomorphism of regular
polytopes with Schläfly symbols {3, 5} and {3, 5/2}, is a classical statement, known
(in this or dual form {5, 3} ↔ {5/2, 3}) to the old masters (Cayley, Möbius, Gour-
sat), see Figures 6-6A and 6-6B in [2, Sections 6.6 and 6.9].

We had a pleasure to rediscover this result ourselves, by looking carefully at
the animation [7], many years after its creation. The proof of Theorem 9 is inspired
by [5]. Theorem 12, in its present form, doesn’t seem to be a well known result.

2. Algebra and geometry of the field F = Q[
√

5]

In this section we collect algebraic and combinatorial preliminaries, on one
hand, and related geometric and topological facts, on the other, needed for ap-
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plication in subsequent sections. One of central objects is the field F = Q[
√

5],
which allows us to view the icosahedron and the great icosahedron as a pair of
algebraically conjugate polytopes.

2.1. Buy, borrow, steal, or at least draw a regular icosahedron!

The amusing advise from the title of this subsection is not our own, it is
“borrowed” from the article by J. Baez [1], however we have been for many years
an admirer and, occasionally, a joyful supporter of this (research) practice.

Following the advise, we continue by borrowing the image of the icosahedron
with three golden rectangles2 depicted in Figure 2, which is appropriately referred
to as the “golden icosahedron”.

x

Figure 2. Icosahedron with three golden rectangles

The reasons it is called golden icosahedron is self-evident. The length of the
longer (respectively shorter) side of each of the rectangles is 2φ (respectively 2),
where φ = (1 +

√
5)/2 is the golden ratio number.

Twelve vertices of the golden icosahedron are naturally classified into the fol-
lowing three types,

(1) (0,±φ,±1), (±1, 0,±φ), (±φ,±1, 0),

each type associated to the corresponding golden rectangle (Figure 2), and charac-
terized by the position of the zero coordinate.

Let us calculate the distances between different pairs of vertices of the golden
icosahedron. In reality there is nothing to calculate, since everything is visible and

2This file, downloaded from https://en.wikipedia.org/wiki/File: Icosahedron-golden-
rectangles.svg, is released by the copyright owner into the public domain and included into the
Wikimedia Commons freely licensed media file repository.
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easily read from Figure 2. Indeed, unless v1 and v2 are antipodal, the distance
d(v1, v2) is either d1 = 2 or d2 = 2φ, where in the first case v1 and v2 are neighbors,
while d(v1, v2) = 2φ if and only if v1 and v2 are two steps away from each other
(measured on the vertex-edge graph of the icosahedron).

Note that there is also a simple combinatorial criterion, allowing us to decide
whether d(v1, v2) is 2 or 2φ without looking at Figure 2 (if we tacitly assume that
neither v1 = v2 nor v1 = −v2).

1. If v1 and v2 are of the same type, say v1 = (0, a, b) and v2 = (0, c, d), then
d(v1, v2) = 2 if a and c are of the same sign (and consequently b and d of
different sign). Similarly, d(v1, v2) = 2φ in the opposite case when a and c are
of the opposite sign (and consequently b and d of the same sign).

2. If v1 = (a, b, c) and v2 = (a′, b′, c′) are of different type, say a = b′ = 0, then we
look at the absolute value |c− c′| ∈ {φ− 1, φ + 1} and conclude that d(v1, v2)
is 2 or 2φ depending on whether this value is φ− 1 or φ + 1.
For illustration one can easily verify, both geometrically and combinatorially,

that the five neighbors of a1 = (0, φ, 1) are N (a1) = {a2, b1, b2, c1, c2}, where
(2)

a2 = (0, φ,−1), b1 = (+1, 0, φ), b2 = (−1, 0, φ), c1 = (+φ, 1, 0), c2 = (−φ, 1, 0) .

2.2. Algebraically conjugate polytopes

We have seen in Section 2.1. that the coordinates of all vertices of the golden
icosahedron belong to the field F = Q[

√
5]. Recall that elements of Q[

√
5] are

real numbers α which can be expressed as a sum α = p + q
√

5, for some rational
numbers p, q ∈ Q.

An automorphism of a field Q ⊆ F ⊆ R is a bijective map Φ : F → F which is
additive and multiplicative,

Φ(x + y) = Φ(x) + Φ(y) and Φ(x · y) = Φ(x) · Φ(y)

for each x, y ∈ F . As a consequence Φ(0) = 0, Φ(1) = 1, . . . , Φ(r) = r, for each
rational number r ∈ Q.

Exercise 1. Show that the only non-trivial automorphism of the field Q[
√

5]
sends x = p + q

√
5 to its conjugate x̄ := p− q

√
5.

Exercise 2. A regular pentagon is clearly visible in Figure 2. Show that there
does not exist a regular pentagon in the plane R2 such that the coordinates of all
its vertices belong to the field Q[

√
5].

Each automorphism Φ : F → F of a field F ⊆ R has an associated map Φ̂ :
F 3 → F 3, where Φ̂((x1, x2, x3)) := (Φ(x1),Φ(x2), Φ(x3)) for each triple x1, x2, x3 ∈
F . The map Φ̂ is also additive and multiplicative, with respect to the coordinate-
wise addition and multiplication. On the other hand the relation Φ̂(λx) = λΦ̂(x),
where λ ∈ F and x ∈ F 3, in general holds only if λ ∈ Q.
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Summarising, a rational convex combination α1a1 + · · ·+αkak, where ai ∈ F 3

and αi ∈ Q, is mapped to a similar convex combination

Φ̂(α1a1 + · · ·+ αkak) = α1Φ̂(a1) + · · ·+ αkΦ̂(ak) ,

the barycenters (with rational weights) of simplices (edges, triangles, tetrahedra),
with vertices in F , are mapped to the corresponding barycenters via Φ̂, etc. This
point of view allows us to give a more precise meaning and unambiguous description
of conjugate polytopes as Φ̂-transforms of (triangulated) convex polytopes.

Definition 3. Suppose K is a geometric simplicial complex [6], or less formal-
ly a “triangulated polyhedron”, such that all its vertices are in a field F . Then the
Φ̂-transform Φ̂(K) of K is another geometric simplicial complex whose geometric
simplices are convex hulls (in R3) of Φ̂-images Φ̂(L) of faces L of K.

Definition 4. (Conjugate polytope, cf. [5]). Suppose that all vertices of
a convex polytope Q ⊂ R3 with triangular facets have coordinates in a subfield
F ⊂ R. Let Φ : F → F be an automorphism of F and let Φ̂ : F 3 → F 3 be the
induced map Φ̂((x1, x2, x3)) := (Φ(x1), Φ(x2), Φ(x3)). Let K be the 2-dimensional,
geometric simplicial complex which triangulates the boundary ∂(Q) of Q. Then
the “polytope” conjugate to Q is the geometric simplicial complex Φ̂(K), obtained
as the Φ̂-transform of K in the sense of Definition 3.

Perhaps it should be clarified, in what sense is the geometric simplicial complex
Φ̂(K), constructed in Definition 4, a genuine polyhedron. This question brings us
back to the famous paper (and book chapter [4]), questioning different definitions of
a “polytope”. It turns out that quite often Φ̂(K) is (associated with) a meaningful
polytope [5], which deserves to be called a conjugate of Q and denoted by Φ̂(Q).
This is for example the case (Theorem 9) with the golden icosahedron and its
conjugate polytope, the great icosahedron, exhibited side by side in Figure 3.

Figure 3. Coiled paper dragons: Icosahedron and the great icosahedron
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For the reader’s convenience, here is a simple 2D example illustrating the
concepts and constructions introduced in this section.

Example 5. Let P = Conv(N (a1)) be the pentagon, defined as the convex
hull (in R3) of the set N (a1) of five neighbors of a1, in the golden icosahedron (see
Figure 2 and the relation (2)). Let Ψ : Q[

√
5] → Q[

√
5] be the only non-trivial

automorphism of Q[
√

5] (sending x = p + q
√

5 to its conjugate x̄ := p− q
√

5) and
let Ψ̂ be the induced map on F 3 = Q[

√
5]3. What can we say about Ψ̂(P )?

First of all we observe that

Ψ(φ) = Ψ

(
1 +

√
5

2

)
=

1−√5
2

= − 1
φ

.

It follows that Ψ̂(a1) = Ψ̂((0, φ, 1)) = (0,− 1
φ , 1) = 1

φ (0,−1, φ). Similarly, Ψ̂(a2) =
1
φ (0,−1,−φ), Ψ̂(a2) = 1

φ (0,−1,−φ), Ψ̂(a2) = 1
φ (0,−1,−φ), Ψ̂(a2) = 1

φ (0,−1,−φ),

Ψ̂(a2) = 1
φ (0,−1,−φ).

Exercise 6. Show that the vertices of the pentagon P are mapped by Ψ̂ to
the vertices of another golden icosahedron (shrank by a factor of φ). What is the
image of this pentagon?

The following proposition implies that
√

5 and −√5 are indistinguishable (in-
discernible) in Q[

√
5], in the sense that

P (
√

5) = 0 ⇔ P (−
√

5) = 0 ,

for each polynomial P (x) with rational coefficients.

Proposition 7. If P (x1, x2, . . . , xn) is a multivariate polynomial with rational
coefficients, then for each n-tuple a = (a1, . . . , an) ∈ Fn = Q[

√
5]n,

P (a1, a2, . . . , an) = 0 ⇔ P (ā1, ā2, . . . , ān) = 0 .

Proof. The proposition is a consequence of the relation P (a1, a2, . . . , an) =
P (ā1, ā2, . . . , ān) .

3. Icosahedron and the great icosahedron

Recall that the great icosahedron is usually described as a stellation of the
standard icosahedron, see [2, Section 6]. The procedure we outline here (in Exer-
cise 8) is a (more combinatorial) variant of “faceting of platonic solids”, described
in [2, Section 6].

We already know (Section 2.1) that there are only two numbers, d1 = 2 and
d2 = 2φ, which measure the distance d(v1, v2), between two distinct, non-antipodal
vertices of the golden icosahedron. The set of all unordered pairs {v1, v2} of vertices
of the golden icosahedron such that d(v1, v2) = 2, is identified as the set of its edges.
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Similarly, the set of all unordered pairs {v1, v2} of vertices of the golden icosa-
hedron such that d(v1, v2) = 2φ, is identified as the set of edges of a graph whose
3-cliques correspond to facets of a triangulation of a sphere.

Exercise 8. Show that, if we allow the self-intersections, the natural geo-
metric realization of this combinatorial sphere is precisely the great icosahedron,
depicted in Figure 3 on the right.

Theorem 9. The great icosahedron (Figure 3) is the conjugate polytope of the
golden icosahedron (Figure 2), with respect to the unique non-trivial field automor-
phism of Q[

√
5].

Proof. Let Ψ : Q[
√

5] → Q[
√

5] be the only non-trivial automorphism of Q[
√

5]
(sending x = p + q

√
5 to its conjugate x̄ := p − q

√
5) and let Ψ̂ be the induced

map on F 3 = Q[
√

5]3. Let K be the 2-dimensional geometric simplicial complex,
recording the triangulation of the boundary of the golden icosahedron, depicted in
Figure 2.

By Definitions 3 and 4 we need to:
(a) determine the image Vert2 := Ψ̂(Vert1) where Vert1 = Vert(Ico1) is the vertex

set of the original golden icosahedron Ico1 (described in (1));

(b) determine the image Ψ̂({a, b, c}) for all triples of vertices {a, b, c} ⊂ Vert1,
corresponding to facets of the golden icosahedron Ico1.
Since Ψ(φ) = − 1

φ and Ψ(r) = r for each r ∈ Q, by applying the map Ψ̂ on
vertices listed in table 1, we obtain the following list:

(3)
1
φ

(0,∓1,±φ),
1
φ

(±φ, 0,∓1),
1
φ

(∓1,±φ, 0) .

It follows that the image Ψ̂(Vert1) = 1
φVert(Ico2) is the vertex-set of another

(secondary) golden icosahedron Ico2, scaled down by the factor φ. Since Ψ̂ is an
involution, we conclude that the map

φΨ̂ : Vert(Ico1) −→ Vert(Ico2)

is a bijection between vertices of two (different but isometric) copies of the golden
icosahedron.

This accounts for (a).
For part (b) it is sufficient to show that for each triple of vertices {a, b, c} ⊂

Vert1,

‖a− b‖ = ‖b− c‖ = ‖c− a‖ = 2

⇐⇒ ‖φΨ̂(a)− φΨ̂(b)‖ = ‖φΨ̂(b)− φΨ̂(c)‖ = ‖φΨ̂(c)− φΨ̂(a)‖ = 2φ .

This follows from Proposition 7, applied to the polynomial P (x, y) = ‖x− y‖2 − 4,
which implies that

‖u− v‖2 = 2 ⇔ ‖Ψ̂(u)− Ψ̂(v)‖ = 2 ⇔ ‖φΨ̂(u)− φΨ̂(v)‖ = 2φ ,

for each pair of vertices {u, v} ⊂ Vert1.
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Corollary 10. The great icosahedron and the icosahedron are isomorphic as
abstract simplicial complexes.

Indeed, the desired isomorphism is provided by the map φΨ̂.

Exercise 11. Show that the map φΨ̂ : Vert(Ico1) −→ Vert(Ico2) is equivari-
ant with respect to the actions of the rotation groups of Ico1 and Ico2.

4. Unfolding of the icosahedron and the great icosahedron

If we rewind the paper dragon animation, we obtain a nice example of an
unfolding of a convex polytope. Recall that we can unfold a 3D polytope by cutting
along its edges and laying its connected faces on the 2D plane. When faces do not
overlap, the result is called a net. The opposite process is naturally referred to
as the folding (of a planar net) and the paper dragon animation provides a vivid
“proof” how a folding of the dragon-net to an icosahedron can be continued to a
folding of a great icosahedron.

In order to unfold a convex polytope we must be careful how we cut its bound-
ary. More precisely if Γ = (V, E) is the subgraph of the vertex-edge graph of the
polytope which records all the cuts, then Γ has no cycles (otherwise we would
disconnect the polytope) and each vertex is reached by a cut (otherwise the neigh-
borhood of this vertex would not be flattened).

Summarising, Γ = (V,E) produces an unfolding if and only if it is a spanning
tree in the vertex-edge graph of the polytope. For illustration, each Hamiltonian
path on a polytope is its spanning tree and, as explained in [9], this is precisely the
origin of our paper dragon.

Theorem 12. Each unfolding of the icosahedron is also an unfolding of the
great icosahedron, and vice versa. In particular, if we choose an arbitrary net of
the icosahedron (there are 43380 of them!) and create the corresponding animation,
then, sooner or later, we will see the image of the great icosahedron.

Proof. The proof is surprisingly simple. Let Γ = (V, E) be the spanning tree
in the vertex-edge graph of the icosahedron Ico, and let W = WΓ be its unfolding
associated with the tree Γ = (V, E). The unfolding WΓ is a 2-dimensional simplicial
complex (a triangulation of a 2-disc) and, by assumption, there exists a simplicial
map λΓ : WΓ → Ico which is bijective on the interior of the disc WΓ and a two-fold
(2-to-1) covering on the boundary of WΓ.

By Corollary 10, the boundary simplicial complexes of the icosahedron Ico and
of the great icosahedron GS-Ico are isomorphic (as abstract simplicial complexes).
Let θ : Ico → GS-Ico be this isomorphism. Then the composition map θ ◦ λΓ

describes the associated unfolding of GS-Ico.
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4.1. The isomorphism φΨ̂ revisited

The combinatorics of the folding maps λΓ : WΓ → Ico and θ ◦ λΓ : WΓ →
GS-Ico, introduced in the previous section, provides a new (combinatorial geomet-
ric) insight into the isomorphism θ = φΨ̂ from Corollary 10.

Figure 4. Paper dragon with numbered triangular cells

Let us begin by taking yet another look at the paper dragon (Figure 4), asking
ourselves if we can reconstruct the map λΓ : WΓ → Ico directly from this picture.
Indeed, the paper dragon is, for a topologist, just a triangulated topological disc,
similar to a regular 22-gon, triangulated by a particular choice of its 19 (pairwise
non-intersecting) diagonals. Then (for a topologist) the map λΓ is just an identifi-
cation process, where we glue together pairs of edges of the 22-gon, which should
be done in such a way that the result is a 2-sphere.

However, this gluing procedure is by no means unique. Actually, there are
Cat11 ways to do it, where

Catn =
1

n + 1

(
2n

n

)

is the famous Catalan number.
Fortunately, in our case we know that the result should be the (boundary of an)

icosahedron. In particular each vertex is incident to exactly five triangles and, as a
consequence, the free sides of the triangles 7 and 11 should be glued together. After
that a new vertex incident to five triangles appears, namely the vertex common to
triangles 5, 6, 7, 11 and 12, the free edges of triangles 5 and 12 should be glued
together, etc., a new vertex incident to five triangles emerges, and so on.

Exercise 13. Complete this process, give an explicit description of the map
λΓ and show that the corresponding spanning tree Γ is a chain of length 11.

What if the result of the gluing process is supposed to be a great icosahe-
dron? The gluing itself should be (topologically) the same, since we know that by
Corollary 10 the result should be (topologically and combinatorially) the same.
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However, the difference is in geometry. Guided by the animation and/or Ex-
ample 5 we know that the star of the vertex v, incident to triangles 7, 8, 9, 10
and 11, is the cone over a pentagon (in the case of the icosahedron) and the cone
over a pentagram (in the case of the great icosahedron).

This means that, in the case of the great icosahedron, the triangles 7 and 11
are glued together along their free edges e7 and e11 only after e11, the free edge
of 11, is rotated counterclockwise around the vertex v, through the angle of 360
degrees, while e7, the free edge of 7, is not moving at all. In order to obtain the
great icosahedron this extra twist should be performed before gluing for each of the
vertices of the paper dragon.
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