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FROM FEYNMAN’S TRIANGLE TO FEYNMAN’S TETRAHEDRA
Silvano Rossetto, Giovanni Vincenzi

Abstract. We investigate a natural extension of so called planar t-Feynman
configurations, referring to triangles, to three dimensional ¢-Feynman configurations,
referring to tetrahedra. Our main result extends to three dimensions the well-known
Routh’s formula for planar t-Feynman configurations.
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1. Introduction

If each vertex of a triangle ABC' is joined by a “cevian” to the point 1/3 along
the opposite side (measured say anti-clockwise), then the area ABC' is 7 times the
area of the triangle determined by the cevians.

A —_—— 4

AB/3

Fig. 1. The classical Feynman’s configuration. The area of ABC' is seven times the area of 7 /3.

The result shown in Fig. 1 is often referred to as Feynman’s theorem and
the central triangle is the classical Feynman’s triangle. It appears that the great
physicist tried to show the theorem at the end of a dinner with a guest, Prof. Kai Li
Chung of Stanford University during a visit to Cornell University. Feynman proved
the theorem for equilateral triangles. In the planar case, the most natural extensions
are those obtained replacing 1/3 with a positive parameter ¢ < 1. Examples of
t-Feynman configurations are given below (see Fig. 2).
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t=0.79

t=021 C

A1=B+1(C-B)
Bi=C+t(A-C)
Ci=A+H(B-A)

A1=B+1(C-B)
By =C+t(A-C)
Ci=A+YB-4)

Fig. 2. The 0.21-Feynman and the 0.79-Feynman configurations

The ratio between ABC' and its t-Feynman triangle is given by the following
Routh’s Formula (see [4, Eq. 13.55]).

ABC [+ 410 () + 5+ (2 —t+1)
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More recently, some connections with elementary number theory have been high-
lighted (see [2, 3, 9, 10, 11] and references therein).

The question of extending the t-Feynman’s configurations to tetrahedra ap-
pears naturally. In Section 2, for every ¢ € (0,1) we give the corresponding con-
struction of the t-Feynman’s configurations for tetrahedra. It turns out that every
tetrahedron has six distinct configurations of ¢t-Feynman’s tetrahedra which have
the same volume. The main theorem is in Section 3, where we determine the ratio
R(t) between the original tetrahedron and one of its “t-Feynman’s tetrahedra” (see
Theorem 3.1). As a special case, when ¢t = 1/3, it turns out that the ratio is 15
(see Corollary 4.1). This is the corresponding result in the Euclidean space of the
classical Feynman’s theorem (1).

In Section 4 we highlight that there are infinitely many rational parameters
t such that R(t) is an integer (Corollary 4.2). In particular, replacing ¢ with a
suitable integer parameter u, we will obtain the notable sequence A006003 of OEIS
(see Remark 4.3).

2. The t-Feynman’s tetrahedra

First of all, we note that as well as in the Euclidean plane, in the Euclidean
space the affine transformations also preserve the parallelism between lines and
between planes and also the relationships between volumes, between the areas of
coplanar figures and the lengths between collinear segments (see [4]). Therefore,
in order to determine the ratio between the volume of a tetrahedron 7 and its
“t-Feynman’s tetrahedra”, we may start from an arbitrary tetrahedron.

Let 7 = {4y, By, Co, Do} be a tetrahedron represented as in Fig. 3 and note
that there are three skew quadrilaterals associated with T: Q1, Q2 and Qs.

Clearly each Q; may be ordered in two ways by choosing an ordered 4-tuple
and its opposite order. In this way we have six ordered skew quadrilaterals associated
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Dy

Fig. 3. The skew quadrilaterals associated with a regular tetrahedron: black, blue and red
with T , "
Q' = (Ao, Bo, Co, Do), 1 = (Ao, Do, Co, Bo);
Q5 = (Ao, Co, Dy, By), Q5 = (Ao, By, Do, Cy);
Qé’): (A()aDOaBOaCO)a Qé/: (A07CO;B07DO)~
We start by focusing our attention on the ordered quadrilateral Q). Note that its
sides are: A(]Bo, B()OQ, C’()l)()7 D()Ao.

Taking as a model the standard construction in 2-dimensional case, here we
will construct the t-Feynman’s tetrahedron of 7 (referred to Q1), say 7o/, by means
of 4 cevian planes. We consider (orderly) the t-parts A; Ag, B1 By, C1Co, D1 Dy, of
the sides AgBy, BoCo, CoDgy, DoAo (see Fig. 4). Using the parametric equations
for segments, we have

A = (1 — t)Ao + tBy, By = (1 — t)B() + tCy,
Cl = (1 - t)C() + tD(), D1 = (1 - t)Do + tAo.

Now, we will denote by m¢,, the plane through C; and the opposite side AgBy (see
the red plane in Fig. 4, left and right), and in a similar way we may consider the
planes w4, ,75,, 7D, , (see m4,-blue and 7p,-green, Fig. 4, right).

Dy

By

Fig. 4. The construction of a vertex of the t-Feynman’s tetrahedron

of a regular tetrahedron when ¢t = 1/3
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Clearly, the intersection of three planes among w4, , 7¢,, TB,, Tp, determines
one point. In this way, we may consider four points Ay, Bs, Cy, Do as the inter-
sections of the four choices of such triples (see Fig. 5). This construction depends
on the parameter ¢, thus it is natural to define 7o/ (t) = 7 (A, B2, C2, D2) as the
t-Feynman’s tetrahedron of T with respect to Q). In a similar way, we may con-
struct Tgy (t), T, (t), Toy(t), To,(t), and Tgy(t). When there are no ambiguities,
we use the notation 7g(t).

Dy

Cp

Al BI

By

Fig. 5. The vertices of the t-Feynman tetrahedron of 7" with respect to Q}

REMARK 2.1 We note that, traversing the quadrilateral Q; in two opposite
directions is equivalent to replacing the parameter ¢ with its complement (1 — t),
for every t € (0,1). Thus, by the above construction, the tetrahedra 7o, (t) and
Terl(l — t) are congruent.

REMARK 2.2. Given a regular tetrahedron 7 and chosen a parameter ¢, one
may expect each t-Feynman’s tetrahedron to be regular. The following example
shows that it is not true. Indeed, the four faces of each Feynman’s tetrahedron are
usually isosceles but not equilateral triangles. This will be proved more generally
in Theorem 3.4. Here, we give an example.

ExAMPLE 2.3. Let T = AyByCyDy be a regular tetrahedron whose sides
length is 1, and consider the ordered skew quadrilateral Q) = (Ao, Bg, Co, Do).
After the construction of the Feynman’s tetrahedron 7o/ (1/3) of 7, we observe
that the measure of its sides is not the same (see Fig. 6). More precisely, at the
third decimal digit we have:

A3By = 0.39441, ByCo = 0.39441, C3D5 = 0.39441, Dy Ay = 0.39441 (red sides);
AsCy = 0.44721, By Dy = 0.44721 (blue sides).
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® A0 =(0,0,0)

® B0 =(1,0,0)

® Cco =(0.5,0.866, 0)

® D0 =(0.5,0.289, 0.816)

® g=1 Dy

®h=1 A\

®i=1 7N

®j=1 j

® k=1

e =1 5 \
t=0333 Gf N4

\
\

® A1=(0.333,0,0)

® B1=(0.833, 0.289, 0)

® C1=(0.5,0.674, 0.272)
® D1=(0.333, 0.192, 0.544)
® A2=(0.467, 0.539, 0.218)
® C2=(0.367, 0.135, 0.054)
® B2=(0.433, 0.212, 0.435)

® D2 =(0.733, 0.269, 0.109)
® p=0447
® q=0.447
® r=0.394
® 5s=03%4

® b=0.3%4
® c=039%4

Fig. 6. In the middle, the unit regular tetrahedron 7 = {Ag, Bo, Co, Do} and its 1/3-Feynman’s
tetrahedron TQxl (1/3), (by Geogebra). Note that p = A2C2 and g = B2 D2 (blue sides), are
different from r = A3Bs, s = BaCa, b= C2D3 and ¢ = D2 Ag (red sides). The right side of

the figure shows the development of Feynman’s tetrahedron, as four isosceles

(non-equilateral) triangles.

3. The main result

THEOREM 3.1. Let T be a tetrahedron, and let Q be an associated ordered
skew quadrilateral of T. Then for every positive real number t < 1, we have:

vol (7))

@ vl (Tot))

t2 4+ (1 —t)?
(1—2t)3

)

where Tg(t) is the t-Feynman tetrahedron of T with respect to Q. Moreover,
vol (Tg(t)) = vol (Tg(1 —1t)).

Proof. As the tetrahedra are affinity equivalent, without the loss of generality,
we may choose 7 whose vertices are:
1 v3 1 3
(3) AO = (]-7 070)7 BO = (_57 gvo)a CO = (_57 _gvo)a DO = (07 07 \/5)

Thus 7 = {Ag, Bo, Co, Do} is a regular tetrahedron, whose sides lenghts is L = v/3.

In particular:
— @ L3 = @
12 4
We will focus on the ordered skew quadrilateral Q) = (AqBoCoDy).

The computation of the volume of the ¢-Feynman’s tetrahedron 7g, (t) involves
the parameter ¢, and as we will see it is of certain complexity. To simplify the
calculus, we will use symbolic computation software that allows us to define suitable
functions.

vol (7)



112 S. Rossetto, G. Vincenzi

We start from 7', whose vertices are given by (3). First, we define the function
F(t), which is the parametric equation of the segment AB:

(4) F(A,B,t) = (1 —t)A +tB.

Using the function (4), and the coordinates (3) of 7, we can determine the coordi-
nates of t-Feynman points:

3.t V3.t
Ai(t) == F(Ag, B, t) = (1 -2 7,0),
1 V3
Bi(t) := F(Bo, Co, t) = (—57 V3 t,O),
1—1t 3
Cu(t) = F(Co, Do, 1) = (———=.—(1 —t)%,\/i ),
Di(t) := F(Do, Ao, t) = (£,0,V2 - (1 —1)).
Given three non-aligned points of R3, say A = (ag,ay,a.), B = (by,by,b.),
C = (¢g,¢y,¢;), and using determinants, we define the function P(A, B, C'), that

gives the equation of the plane trough A, B, C":

gz Gy G
by by, b,
Cx Cy Cs
T Yy =z

P(A,B,C) = det =0.

T

By construction (see Fig. 4), each vertex of 7Tg/(t) is the intersection of three
planes. Thus, to determine their coordinates we have to solve four systems. The
computation gives:

P(Ag, By, Ci(t)
BO) CO7 Dl(t)
P(Co, DO,Al(t)

t2+t—1 —2t) VBB +(1-1)?) ﬁ.t(l—t)2>

)
)
)

T (1-02) 2+ (1 1)

(
t( (1 —2t) V3-t2(1—-2t) V2-(1-1)3
)2+ (1-1)?) 2+ (1) )7

(a-pE-ta-2t) V3-t(1-20)1-¢t) V2.8
B 22+ (1—1)2) 7 22+ (1-1)?) T2+ (1-1t)?
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P(Dy, Ay, B1(t))
Ds(t) := § P(Ao, Bo, C1(1))
(5) P(Bo, Co, D1(1))
A+ 2t—1) V3-(1-2t)(1—1)* V2-3(1—1)
C\2@+ (-1 22+ (1-1)?2) T2+ (1-t)2 )"
Finally, we need a function to compute the volume of the tetrahedron
T ={A,B,C, D},
ay ay a; 1
1 by b, b, 1
vol(A,B,C’,D)—g-det o o o 1
dy dy d, 1

In particular, for 7 = { Ao, By, Co, Do} and Ty, (t)) = {Aa, B2,C5, D2}, we obtain:

1 \Of 0 1
1 3
-z 7 01 V6
vol (7) = = - |det _; _2? o 1= and
0 0 V2 1
(#24t—1)(1-2t) VB(H24+(1-)°) 3112 1
2(12+(1—-1)2) T 2(t2+(1-1)2) 2+ (1-t)2)
1 t(2—t)(1—2t) V342 (1-2t) V2-(1-t)3 1
, - . 2(t2+(1-1)?) 2(t2+(1-1)?) t24+(1-1)?)
vol (Tgl(t))) det (1-—t)(2=t)(1=2t) V3-t(1-2t)(1—1)> V2t 1
2012+ (1-1)2) 212+ (1-1)2) Zr(I-02)
(1+t2)(2t—1) V3-(1=2t)(1—t)®  V2:t%(1—1t) 1
202+ (1-1)2) 22+ (1-1)2) Zr(I-02)
_ V6| (-2
4 |2+ (1-0)2

Therefore the ratio between the volumes of 7 = (Ag, By, Co, Dy) and the t-Feyn-
man’s tetrahedron 7o, () = (A2(t), B2(t), C2(t), Da(1)) is

(6) VOl (Ao, BO, Co, Do) o ? _ t2 + (1 — t)2
vol (Az(t), Ba(t), Ca(t), Da(t)) — 6. _(1—20° (1—2t)3

4 T r24(1-1)2

The above argument also runs over for every other choice of ordered skew quadri-
laterals Q.

To complete the proof, it is enough to apply Eq. (6):

V6 [1—2(1-1)]3 120
vol(Te(l =) = == ’(1 —024+(1-(1-1)2] ‘(1 —1)2 + ()2
V6 | (1 —2t)°
= e =T Te). =
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The first remarkable consequence of Theorem 3.1 is that the volume of the
t-Feynman tetrahedra does not depend on the initial choice of the skew ordered
quadrilateral.

COROLLARY 3.2. Let T be a tetrahedron. Then, for every t < 1 (positive
number), all t-Feynman’s tetrahedra of T have the same volume.

REMARK 3.3. In Remark 2.1, we have observed that 7o/ () and 7o, (1 —¢)
are congruent, therefore they have the same volume. This can be also seen as a
consequence of Theorem 3.1.

We conclude this section showing that every ¢-Feynman’s tetrahedron of a
regular tetrahedron has four isosceles (non equilateral) faces, in particular it is not
regular.

THEOREM 3.4. Let T = {Ag, Bo,Co, Do} be a regular tetrahedron and let
t € (0,1). Then, every t-Feynman’s tetrahedron of T has four isosceles faces, in
particular it is not reqular.

Proof. We start from a regular tetrahedron 7 as defined in (3). Let Q) =
(Ao, By, Co, Dp) be an ordered quadrilateral associated with 7. We will show that
Tg; (t) has four isosceles faces. Let A = (az,ay,a.) and B = (bs,by,b;) be two
distinct points in R3. The length of AB is:

D(A,B) = \/(agc —b.)% + (ay — by)? + (a, — b,)2.

Using relations (5) and (5'), by a computation we can determine the lengths of the
sides of 7g; (t):

V3 (1-21)
VR
(1) D(A2t)Ba(t)) = D(B2(t)Ca2(t)) = D(C2(t) D2(t)) = D(Da(1) A2(1))
Y e G Gt )}
2+ (1—t)2
It turns out that 7o, (t) has four isosceles faces. Moreover, by the relations (7),

7o, (t) is regular if and only if 2 — ¢ + 1 = 1. This is impossible as by hypothesis
t#0andt#1.m

D(As(1)Cs(t)) = D(Ba(t) Da(t)) = and

4. Applications and remarks

As a special case of Theorem 3.1, we have the corresponding Feynman’s the-
orem for regular tetrahedra:

COROLLARY 4.1. Let T be a (regular) tetrahedron, and let Q be an associated
ordered skew quadrilateral of T. Then

vol (T) t+3
—92.

I

vol (To(1/3)) (1 = 15
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The formula (2) also implies other consequences.

Let 7 be a regular tetrahedron, and let ¢ < 1 be a positive number. By
Theorem 3.1, if ¢ is rational, then the ratio between the volume of 7 and the
volume of a t-Feynman tetrahedron is likewise rational. In particular, it may be
surprising that Eq. (2) gives integer ratios when ¢ = § and ¢ = ;. Are there other
cases?

As we will see, there are infinite rational parameters such that the ratio of (2)
is an integer. To see this, it is helpful to replace the parameter ¢ that we have used
in our construction, by another parameter, say u, referred to the middle point of
each side. More precisely, if C' belongs to a segment AB, and AC =t - AB, then
there exists a parameter u such that

AM
oM =,
Uu

where M is the middle-point of AB (see Fig. 7).

¢ M B

Fig. 7. The relation between the parameters t and u for a point C € AB

Note that the following inequalities hold: 0 < t < 1 and w > 1; moreover,
AM = AC + CM, thus factoring by AB we have

L_tAB AM 1 u-l
2 AB uAB 2u, 2w
THEOREM 4.2. Let u be a positive integer; then for every rational number
t= u—l the ratio R(t) = M is a positive integer
= Tou = T2(1-2t)3 b ger
Proof.
—1\ 24+ (1-1) 22-2+1 24N -2%D)+1
R(t):R<u ): +(1—1)? +1_ 20%) (,f“)
. 2u (1—2t)3 (1—2t) (1—-2(%1))3
8
_tE ol Wil w4 )
B . 2w 2
u 112131415 6 7 8 9
w1 ol I3 2[5 374
_ 2u 4138|512 7 |15] 9
-1 241
R(“2u )= G 2+ V1|5 15 | 34| 65 | 111 | 175 | 260 | 369

Table 1. Table of ratios between the volume of a tetrahedron and some Feynman’s tetrahedra
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REMARK 4.3. The sequence that comes out from (8), whose initial terms
are shown in the last line of the above table, can be found in the Encyclopedia of
Integer Sequences (see [12, ref. A006003]), where many of its properties are listed,
but not its connection with ratios between volumes of tetrahedra.

We conclude this section by observing that there are also irrational parameters
t, such that the ratio in (6) is still an integer.

ExXAMPLE 4.4. Looking at Eq. (6), we consider the following one, imposing
the denominator twice the numerator:

2+ (1-t)?=201-2t) < f(t)=16t>—22t* +10t — 1 =0.

Note that f(0) = —1 and f(1/2) > 0, so that this equation has a real root, say
t € (0,1/2). On the other hand, by Gauss Lemma (see, e.g., [6, p. 41], and [13])
it has no rational roots. This means that there are tetrahedra 7 whose volume is
twice the volume of its t-Feynman tetrahedron Tg, () where # is irrational.

5. Conclusions

The proofs of our results are of the analytical-computational type and make
use of affine transformations. On the other hand, just as in the case of the classical
Feynman theorem ([3], [10] and reference therein), it is reasonable to think that
alternative proofs might exist.

The study of solids and spatial geometry is fundamental both for students’
education and from a didactic perspective for several reasons, such as: development
of spatial thinking; practical applications and interdisciplinarity; development of
abstract thinking and problem-solving skills; relationship with Algebra and other
areas of Mathematics (see [1, 5, 7, §]).

ﬂ

Fig. 8. Some hand-models of derived tetrahedra

The above investigation has been object of laboratory activities for undergrad-
uate students in a regular university course. The combined use of symbolic com-
putational softwares such as Derive or Wolfram-alpha, the use of software such as
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GeoGebra (3D modeling), and activities with tangible materials (cardboard solids,
3D printing) make learning more interactive and engaging.
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