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THE GENERAL CHANGE OF VARIABLE FORMULA
FOR THE RIEMANN INTEGRAL

Amar Sarić

Abstract. The change of variable theorem for functions that are Riemann
integrable, i.e. not obligatory continuous or monotonic, is established based on the
definition of the integral and using nothing but the fundamentals of the Riemann the-
ory. Specifically, the Lebesgue criterion for Riemann integrability or more advanced
theories of integration are not required.
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1. Introduction

Standard textbooks, such as those by Apostol [1], Heuser [3] or Shilov [6],
typically present in their treatment of Riemann theory only the trivial version of
integration by substitution:

∫ g(b)

g(a)

f(x) dx =
∫ b

a

f(g(t))g′(t) dt

which holds for functions f and g provided that g is continuously differentiable
on [a, b] and f continuous on {x | x = g(t), t ∈ [a, b]}. Many authors, e.g. [3], do
not point out at all that there are other formulations, while some, e.g. [1], refer
the reader to Lebesgue integration. There are a few exceptions, such as Zorich [7],
who proves a version of the theorem for Riemann integrable f and g′ under the
assumption that g is a monotonic function.1 Of course, it is well-known that the
theorem still holds when f and g′ are merely Riemann integrable. Nevertheless,
one should keep in mind that it might be surprising to students when encountered
for the first time, because for instance f(g(t)) does not have to be integrable if g is
continuous and f(t) Riemann integrable, see [5]. Kestelman [4] is commonly cited
as a reference for the general theorem, but his proof relies on Lebesgue’s criterion
for Riemann integrability. Davies’s proof [2] is more direct, yet unfortunately it
has not been included in textbooks either. Thus, as a rule, one leaves question
unanswered or otherwise introduces the fact that a function is integrable if and

1To be exact, Zorich states the theorem for continuous and positive g′ and Riemann in-
tegrable f , but the proof is general enough and can easily be extended to Riemann integrable
functions.
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only if it is continuous everywhere except on a null set, which might make the
exposition too abstract for some readers many of whom will be first year students,
and even then one does not go beyond just mentioning the theorem. Perhaps one
could say it does not matter, but that argument is hard to accept when it comes
to a tome of several hundred pages. However, since, as will be shown, we can make
the size of the set where g cannot be approximated by monotonic functions in a
sense arbitrarily small, combining bounds used by Davies [2] with the ideas from
Kestelman [4] and Zorich [7] leads to a rather intuitive, although still not necessarily
‘easy’, proof.

2. Obtaining the formula in an elementary manner

As it helps to have the special case for monotonic g at hand before proving
the main result, the proof will be given in two stages.

Theorem. Let g(t) and h(t) be real functions defined on the interval [a, b],
such that h(t) is Riemann integrable on [a, b] with

g(t) =
∫ t

a

h(u) du + C,

where C is some real constant. Further, let f be another real function that is Rie-
mann integrable on the set {x | x = g(t), t ∈ [a, b]}. Then, the function f(g(t))h(t)
is Riemann integrable on [a, b] and

∫ g(b)

g(a)

f(x) dx =
∫ b

a

f(g(t))h(t) dt.

Proof. In order to make writing of some intervals a bit more convenient, sets
of the form {x | x = g(t), t ∈ [p, q]} will be denoted by g([p, q]). Since g(t) is
continuous, it reaches its maximum and minimum on [a, b] as well as all the values
in between at least once. Therefore, g([a, b]) is itself a compact interval. Also, f ,
g, and h are, as Riemann integrable functions, bounded, and there is a constant
M such that |f | ≤ M , |g| ≤ M , and |h| ≤ M on [a, b]. We start by proving the
special case under the additional assumption that either h(t) > 0 for every t ∈ [a, b]
or alternatively h(t) < 0 for every t ∈ [a, b]. The continuity and monotonicity of
g then imply [g(a), g(b)] = g([a, b]) or [g(b), g(a)] = g([a, b]) depending on whether
h > 0 or h < 0, respectively. Let

a = t0 < t1 < t2 < . . . < tn−1 < tn = b

be any partition of [a, b], where 0 < ti− ti−1 < δ, 1 ≤ i ≤ n and δ can be made less
than any positive number by increasing n. Then, we have

g(a) = g(t0) < g(t1) < g(t2) < . . . < g(tn−1) < g(tn) = g(b)

if h(t) > 0 or

g(b) = g(tn) < g(tn−1) < g(tn−2) < . . . < g(t1) < g(t0) = g(a)
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if h(t) < 0, as a partition of g([a, b]). Also, denote the division points by

x0 = g(t0) = g(a)

x1 = g(t1)
· · ·

xn = g(tn) = g(b)

if h(t) > 0 and

x0 = g(tn) = g(b)

x1 = g(tn−1)
· · ·

xn = g(t0) = g(a)

if h(t) < 0. Using this notation, we have x0 < x1 < x2 < . . . < xn−1 < xn in both
cases. Let us consider the sum

n∑

i=1

f(g(ξi)) |κi|(ti − ti−1)

with ξi ∈ [ti−1, ti] and κi chosen so that

g(ti)− g(ti−1) = κi(ti − ti−1)

where inft∈[ti−1,ti] h(t) ≤ κi ≤ supt∈[ti−1,ti] h(t), which is always possible based on
the mean value theorem for definite integrals. We obtain

n∑

i=1

f(g(ξi)) |κi| (ti − ti−1)(1)

=





n∑
i=1

f(g(ξi)) (g(ti)− g(ti−1)) if h(t) > 0 on [a, b]

n∑
i=1

f(g(ξi)) (g(ti−1)− g(ti)) if h(t) < 0 on [a, b]

=
n∑

i=1

f(ρi)(xi − xi−1)

with ρi = g(ξi) ∈ [xi−1, xi] due to monotonicity of g. If h(t) < 0, then the intervals
in Eq. (1) will be added up from right to left over the partition x0 < x1 < x2 <
. . . < xn−1 < xn. Furthermore, we have

∣∣∣∣
n∑

i=1

f(g(ξi)) |h(ξi)|(ti − ti−1)−
n∑

i=1

f(ρi)(xi − xi−1)
∣∣∣∣

=
∣∣∣∣

n∑

i=1

f(g(ξi)) |h(ξi)|(ti − ti−1)−
n∑

i=1

f(g(ξi)) |κi| (ti − ti−1)
∣∣∣∣
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≤
n∑

i=1

|f(g(ξi))|
∣∣|h(ξi)| − |κi|

∣∣(ti − ti−1) ≤ M

n∑

i=1

|h(ξi)− κi| (ti − ti−1)

≤ M

n∑

i=1

( sup
τ∈[ti−1,ti]

h(τ)− inf
τ∈[ti−1,ti]

h(τ))(ti − ti−1) → 0

for δ → 0 under refinement of the partition t0 < t1 < . . . < tn−1 < tn due to
integrability of h, see [4] or [7]. In view of |xi − xi−1| ≤ maxt∈[a,b] |h(t)| |ti − ti−1|
≤ M |ti − ti−1|, the integrability of f on g([a, b]) implies

n∑

i=1

f(g(ξi)) |h(ξi)| (ti − ti−1) →
n∑

i=1

f(ρi)(xi − xi−1) →




∫ g(b)

g(a)
f(x) dx, h(t) > 0

∫ g(a)

g(b)
f(x) dx, h(t) < 0

when the largest of the lengths of the intervals ti − ti−1 tends to 0. Since ξi are
arbitrary values in [ti−1, ti], it follows that

∫ b

a

f(g(t)) |h(t)| dt =





∫ g(b)

g(a)
f(x) dx if h(t) > 0

∫ g(a)

g(b)
f(x) dx if h(t) < 0

and this is precisely our claim.

Next, we proceed to the general case when g is not monotonic. Obviously,
g(a), g(b) ∈ g([a, b]) and, since g takes all values between g(a) and g(b) due to
continuity, we have [g(a), g(b)] ⊂ g([a, b]) or [g(b), g(a)] ⊂ g([a, b]) depending on
which of the two values is greater. Again, let

a = t0 < t1 < t2 < . . . < tn−1 < tn = b

be a partition with ξi ∈ [ti−1, ti], 0 < ti − ti−1 < δ and 1 ≤ i ≤ n, where δ can be
made arbitrary small for large n. By applying the mean value theorem for definite
integrals twice, we readily obtain

∫ g(ti)

g(ti−1)

f(x) dx = λi (g(ti)− g(ti−1)) = λiµi(ti − ti−1),

where |λi| ≤ M and inft∈[ti−1,ti] h(t) ≤ µi ≤ supt∈[ti−1,ti] h(t), as well as

(2)
∣∣∣∣
∫ g(ti)

g(ti−1)

f(x) dx− f(g(ξi))h(ξi)(ti − ti−1)
∣∣∣∣ ≤

∣∣∣∣
∫ g(ti)

g(ti−1)

f(x) dx

∣∣∣∣ +

+ |f(g(ξi))h(ξi)(ti − ti−1)| ≤ (|λi| |µi|+ |f(g(ξi))| |h(ξi)|) |ti − ti−1| .

Let ε be any positive real number. In view of the inequality

n∑

i=1

sup
τ ′,τ ′′∈[ti−1,ti]

|h(τ ′)− h(τ ′′)| (ti − ti−1) < ε2
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that holds for partitions with a sufficiently small δ, based on integrability of h, the
combined length of [ti−1, ti] on which supτ ′,τ ′′∈[ti−1,ti] |h(τ ′)− h(τ ′′)| ≥ ε must be
less than ε. From (2), it trivially follows for every such interval that

(3)
∣∣∣∣
∫ g(ti)

g(ti−1)

f(x) dx− f(g(ξi))h(ξi)(ti − ti−1)
∣∣∣∣ ≤ 2M2 |ti − ti−1| .

We also apply the estimate (2) to [ti−1, ti] on which |h(t)| < ε for all t. This yields

(4)
∣∣∣∣
∫ g(ti)

g(ti−1)

f(x) dx− f(g(ξi))h(ξi)(ti − ti−1)
∣∣∣∣ ≤ 2Mε |ti − ti−1| .

Let the set Q be comprised of the remaining [ti−1, ti], i.e. those intervals on which
it holds that supτ ′,τ ′′∈[ti−1,ti] |h(τ ′)− h(τ ′′)| < ε and at the same time there is some
t ∈ [ti−1, ti] for which |h(t)| ≥ ε. In that case, if [ti−1, ti] contains a point p such
that h(p) ≥ ε, then, because of h(q) ≥ h(p)−|h(p)− h(q)| > h(p)−ε ≥ 0, the value
h(q) must be positive in every point q ∈ [ti−1, ti]. Likewise, if [ti−1, ti] contains a
point p such that h(p) ≤ −ε, then in every point q ∈ [ti−1, ti] the value h(q) must
be negative, since h(q) ≤ h(p) + |h(q)− h(p)| < h(p) + ε ≤ 0. As h(t) does not
change the sign on the individual intervals [ti−1, ti], the special case of the theorem
for monotonic g guarantees that f(g(t))h(t) is integrable on every [ti−1, ti] ∈ Q and

∫ g(ti)

g(ti−1)

f(x) dx =
∫ ti

ti−1

f(g(t))h(t) dt.

Using the estimates (3) and (4), we can sum over the intervals to obtain

(5)
∣∣∣∣
∫ g(b)

g(a)

f(x) dx−
n∑

i=1

f(g(ξi))h(ξi)(ti − ti−1)
∣∣∣∣ ≤ 2M2ε + 2Mε(b− a)+

+
∣∣∣∣

n∑

i=1
[ti−1,ti]∈Q

(∫ ti

ti−1

f(g(t))h(t) dt− f(g(ξi))h(ξi)(ti − ti−1)
)∣∣∣∣

where the first two terms come from the intervals /∈ Q and the last one from those
∈ Q. Now, f(g(t))h(t) is already known to be integrable on the subset of [a, b]
that is the union of intervals ∈ Q. Therefore, and by virtue of the additivity of
domain for definite integrals, we can repeatedly halve the intervals ∈ Q until their
maximum length decreases below some suitable threshold and the last sum in (5)
becomes no greater than, say, ε. This results in

(6)
∣∣∣∣
∫ g(b)

g(a)

f(x) dx−
n∑

i=1

f(g(ξi))h(ξi)(ti − ti−1)
∣∣∣∣ ≤ (2M(M + b− a) + 1)ε

for some partition P of [a, b] and choice of division points ti. Note that ti have
been added as needed and n increased accordingly. Also, the contents of Q change
in agreement with its definition as the intervals that are being split are replaced by
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new intervals generated by each split, whereas the intervals /∈ Q are not altered in
any way. Since ξi can be any value ∈ [ti−1, ti], and because there exist sequences
of values f(g(ξ

ik
)h(ξ

ik
) and f(g(ξik

)h(ξik
), where ξ

ik
, ξik

∈ [ti−1, ti], which with
increasing k converge to the infimum Li and supremum Ui of f(g(t))h(t) on each
of the individual intervals [ti−1, ti] that make up P , it follows that the lower and
upper Darboux sum of f(g(t))h(t) with respect to P must also both lie within
(2M(M + b − a) + 1)ε from

∫ g(b)

g(a)
f(x)dx – all we need to do is take one interval

[ti−1, ti] at a time to form
∑n

i=1 Li(ti − ti−1) and
∑n

i=1 Ui(ti − ti−1) while simply
relying on the fact that the absolute value is a continuous function. Therefore, as
there is such a P for every ε, the lower and upper Darboux integrals of f(g(t))h(t)
on [a, b] are equal to

∫ g(b)

g(a)
f(x) dx.

Corollary. Let g be a real differentiable function on the interval [a, b],
its derivative g′ Riemann integrable on [a, b], and let f be a real function that is
Riemann integrable on {x | x = g(t), t ∈ [a, b]}. Then f(g(t))g′(t) is Riemann
integrable on [a, b] and

∫ g(b)

g(a)

f(x) dx =
∫ b

a

f(g(t))g′(t) dt.

Proof. In view of the fundamental theorem of calculus, the stated conditions
clearly imply that g(t) =

∫ t

a
g′(u) du + g(a).

3. Conclusion

We have used only the equivalence of Riemann’s and Darboux’s definitions and
the fact that the sum

∑n
i=1 supτ ′,τ ′′∈[ti−1,ti] |h(τ ′)− h(τ ′′)| (ti − ti−1) necessarily

goes to zero under refinement of the partitions when h is integrable. The theorem
can, therefore, be included in introductory texts on analysis while keeping the
exposition well within the grasp of undergraduates, and by doing so one would
cover integration more thoroughly. This is arguably the best that we can do when
it comes to the Riemann integration.
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[5] J. Lu, Is the composite function integrable?, The American Mathematical Monthly, 106
(1999), 763–766.

[6] G. E. Shilov, Elementary Real and Complex Analysis, Dover, 1996.

[7] V. A. Zorich, Mathematical Analysis I. Springer, 2004.

ORCID: 0009-0001-6322-5018

E-mail : asaric@gmail.com

Received : 04.08.2025, in revised form 12.09.2025

Accepted : 25.09.2025


