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Abstract. In this note, we introduce the sine and cosine functions on (abstract)
angles that are defined as equivalence classes of vector pairs. We avoid power series,
differential and integral calculus. The number π emerges as the limit of repeated
application of half-angle formula (the Viète formula). It is shown that the functions
defined coincide with ordinary sine and cosine.
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1. Introduction

A quite typical treatment of trigonometric functions is the following. At
school, these functions are first defined in a right triangle (i.e., for angles in [0, π

2 ]).
After that, they are expanded to the whole real line, perhaps using unit vectors ro-
tating around the unit circle. This treatment is not rigorous (as is school geometry,
in general).

In university-level mathematics, however, the students are either told that
“basic definitions were already given at school” or these functions are defined rig-
orously using power series, differential equations (e.g., [1], [3]), or arclength or area
of a sector [4], or, as a minimalistic alternative, using functional equations.

This note defines angles at first, defines the sine and cosine for angles, and in-
vestigates some of their properties in the manner that they eventually coincide with
the “ordinary” sine and cosine functions. The derivative, power series, differential
equations, the concepts of arc length or area are avoided completely in the further
sections. The reasoning will be mostly done in the Euclidean dot product on R2;
however, elements of the exposition can be used for some other dot products.

A number of results in this note are such that their proofs are straightforward
verification. For these results, the proofs have been omitted.

Our goal is to find functions s, c : R → R satisfying the assumptions of the
following theorem.

Theorem 1. [Main result of [5]] For any pair of non-constant continuous
functions s, c : R→ R satisfying the two conditions
(1) ∀x, y ∈ R c(x− y) = c(x)c(y) + s(x)s(y),
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(2) lim
x→0+

s(x)
x

= 1,

there holds

s(x) =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
, c(x) =

∞∑
n=0

(−1)n x2n

(2n)!
, x ∈ R,

i.e., s and c coincide with the “usual” sine and cosine, respectively.

2. Non-oriented angles

Let E be any Euclidean space, i.e., a linear space over R with dot product
〈·, ·〉 that is bilinear, symmetric, and positive for any non-zero vector dot-multiplied
by itself. Denote ‖x‖ =

√
〈x, x〉 for all x ∈ E.

Denote X = E \ {0}. Consider a relation on X ×X as follows:

(x, u) ∼ (y,v) ⇔ 〈x,u〉
‖x‖ · ‖u‖ =

〈y, v〉
‖y‖ · ‖v‖ .

Proposition 1. The relation ∼ is an equivalence relation.

In order to avoid brackets, we denote an equivalence class by [x, u] instead of
[(x, u)].

Proposition 2. [Cauchy-Schwarz inequality] For any two vectors x, u ∈ X
there holds

−1 ≤ 〈x,u〉
‖x‖ · ‖u‖ ≤ 1.

Proof. We expand the left hand-side of
〈

x− 〈x, u〉
‖u‖ u, x− 〈x, u〉

‖u‖ u

〉
≥ 0.

Definition 1. We say that a non-oriented angle between two vectors x, u ∈
X is the equivalence class [x,u]. Denote by NE = X ×X/∼ the set of non-oriented
angles.

The cosine of a non-oriented angle is

Cos[x,u] :=
〈x, u〉

‖x‖ · ‖u‖ .

The case Cos[x,u] = 0 is denoted, as usual, by x ⊥ u.

We emphasize that [x, u] = [u,x] since the dot product is commutative.
Next, we verify that if (either) vector is multiplied by positive scalar or if both

vectors are transformed orthogonally, the angle remains the same.
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Proposition 3. Let k > 0. Then [kx, u] = [x, u].

Proposition 4. Let T : E → E be an orthogonal transformation, i.e., a
linear transformation that preserves the dot product. Then [T (x), T (u)] = [x, u].

Orthogonal transformations include rotations and reflections, in general, all
transformations that preserve angles and vector lengths.

To proceed with the definition of the sine of an angle, we need the oriented
angles since we expect the sine to be an odd function. All further discussion will
be done for the case E = R2.

3. Angles

Denote X = R2 \ {0} and consider a relation on X × X as follows (denote
x = (x1, x2),u = (u1, u2), y = (y1, y2), v = (v1, v2)):

(x, u) ≈ (y, v) ⇔
{ x1u1+x2u2

‖x‖·‖u‖ = y1v1+y2v2
‖y‖·‖v‖ ,

x1u2−x2u1
‖x‖·‖u‖ = y1v2−y2v1

‖y‖·‖v‖ .

Proposition 5. The relation ≈ is an equivalence relation.

Definition 2. We say that the angle between two vectors x,u ∈ X is the
equivalence class [[x, u]] := [[(x, u)]]. Denote by A = X ×X/≈ the set of angles.

The sine and the cosine of the angle [[x,u]] are

Sin[[x,u]] :=
x1u2 − x2u1

‖x‖ · ‖u‖ , Cos[[x, u]] :=
x1u1 + x2u2

‖x‖ · ‖u‖ ,

respectively.

We see that if ũ = (u2,−u1) then Sin[[x, u]] = Cos[[x, ũ]]. As the correctness
of the definitions of sine and cosine follows from the fact that ≈ is equivalence
relation, due to Prop. 2, we have defined the functions Sin, Cos: A → [−1, 1].

Note that again angle is invariant of the length of vectors. For orthogonal
transformations, we must be more careful since, in general, (x, u) 6≈ (u,x). We
have the following.

Proposition 6. Let k > 0. Then [[kx, u]] = [[x, u]].

Proposition 7. Let a, b be real numbers such that a2 + b2 = 1. Let
(

y1

y2

)
=

(
b −a
a b

)(
x1

x2

)
,

(
v1

v2

)
=

(
b −a
a b

)(
u1

u2

)
.

Then (y, v) ≈ (x, u), and ‖y‖ = ‖x‖, ‖v‖ = ‖u‖.
Proof. We have

y1 = bx1 − ax2, y2 = ax1 + bx2, v1 = bu1 − au2, v2 = au1 + bu2,
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hence

y2
1 + y2

2 = (bx1 − ax2)2 + (ax1 + bx2)2 = (a2 + b2)(x2
1 + x2

2) = x2
1 + x2

2,

analogously v2
1 + v2

2 = u2
1 + u2

2, and

y1v1 + y2v2

‖y‖ · ‖v‖ =
(bx1 − ax2)(bu1 − au2) + (ax1 + bx2)(au1 + bu2)

‖x‖ · ‖u‖

=
(a2 + b2)(x1u1 + x2u2)

‖x‖ · ‖u‖ =
x1u1 + x2u2

‖x‖ · ‖u‖ ,

analogously y1v2−y2v1
‖y‖·‖v‖ = x1u2−x2u1

‖x‖·‖u‖ .

The matrices of the form
(

b −a
a b

)
as in Prop. 7 will be called rotation

matrices. The component vectors x, u ∈ X of the angle α = [[x, u]] will occasionally
be called the legs of angle α.

Note that we can always choose the representative of the form ((1, 0),u) (in
general, we can choose the first leg to be any non-zero vector). Indeed, for any
(x,u) ∈ X ×X, x2

1 + x2
2 = 1, we can find the respective rotation matrix: (a, b) is

the unique solution of
(

1
0

)
=

(
b −a
a b

)(
x1

x2

)
=

(−x2 x1

x1 x2

)(
a
b

)
.

Assume from now on that all representatives of equivalence classes are pairs
of length 1 vectors. This can be achieved as in view of Prop. 6, scaling vectors
leaves the angle unchanged.

Proposition 8. We have Sin[[(1, 0), (u1, u2)]] = u2, Cos[[(1, 0), (u1, u2)]] = u1.

4. Sum of angles

The following definition has been inspired by adding angles visually: the sec-
ond angle should be rotated in the manner such that its first leg coincides with
the second leg of the first angle. The sum is the angle between the first leg of the
first angle and the second leg of the second angle. (Bear in mind that all legs are
assumed to be unit vectors.)

Definition 3. Let [[x, u]], [[u, v]] ∈ A. We define the sum of angles [[x, u]] and
[[u,v]] by

[[x,u]] + [[u, v]] = [[x, v]].

Note that [[x, u]] + [[u,x]] = [[(1, 0), (1, 0)]].
In order to simplify calculations, we derive the expression of the sum of angles

expressed using arbitrary length one vector pairs.

Theorem 2. For any two angles [[x,u]], [[y,v]] there holds

[[x,u]] + [[y, v]]

= [[x, (u2v1y2 + u2v1y2 − u2v2y1 + u1v1y1, u2v2y2 − u1v1y2 + u1v2y1 + u2v1y1)]].
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In particular,

[[(1, 0),u]] + [[(1, 0),v]] = [[(1, 0), (−u2v2 + u1v1, u1v2 + u2v1)]].

Proof. We use the suitable rotation matrix for the representative of the second
angle and apply the definition of the sum.

Proposition 9. For any angle [[(1, 0),u]], we have

[[(1, 0),u]] + [[(1, 0), (1, 0)[[ = [[(1, 0),u]],

[[(1, 0), u]] + [[(1, 0), (u1,−u2)]] = [[(1, 0), (1, 0)]].

Definition 4. We denote 0 = [[(1, 0), (1, 0)]] and call it zero angle.
For any angle α = [[(1, 0), (u1, u2)]], we call the angle [[(1, 0), (u1,−u2)]] the

conjugate angle of α and denote it by −α.
For angles α, β ∈ A denote α− β = α + (−β).

Theorem 3. (A, +) is an Abelian group.

Proof. It is perhaps easiest to prove associativity by

([[x,u]] + [[u, v]]) + [[v,w]] = [[x, v]] + [[v, w]] = [[x,w]] =

= [[x, u]] + [[u, w]] = [[x,u]] + ([[u, v]] + [[v, w]]).

Commutativity is obvious, the zero element is the zero angle and, for any angle, its
inverse element is its conjugate angle.

For any n ∈ Z and α ∈ A, we denote

nα =





α + . . . + α︸ ︷︷ ︸
n addends

, if n > 0,

0, if n = 0,

−(−n)α, if n < 0.

Proposition 10. For all α, β ∈ A, there hold

Sin(−α) = − Sinα,

Cos(−α) = Cos α,

Sin(α± β) = Sin α Cos β ± Sinβ Cos α,

Cos(α± β) = Cos α Cos β ∓ Sinα Sinβ,

Sin 2α = 2 Sin α Cos α,

Cos 2α = (Cos α)2 − (Sin α)2.
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Proof. As an example, we prove that Cos(α− β) = Cos α Cos β + Sinα Sinβ.

Let α = [[(1, 0),u]] and β = [[(1, 0),v]]. Now −β = [[(1, 0), (v1,−v2)]]. Due to
Theorem 2,

α− β = α + (−β) = [[(1, 0), (u2v2 + u1v1,−u1v2 + u2v1)]].

Using Prop. 8, we conclude that

Cos(α− β) = u2v2 + u1v1 = Sin α Sin β + Cos α Cos β.

Call Á= [[(1, 0), (0, 1)]] the right angle. We have Cos Á= 0 and Sin Á= 1.

Call x= [[(1, 0), (−1, 0)]] the straight angle. We have Cos x= −1 and Sinx= 0.

Proposition 11. For any α ∈ A, all angles β ∈ A that satisfy 2β = α, are
of the form

[[
(1, 0),±

(√
1 + Cos α

2
, (sgn Sin α)

√
1− Cos α

2

)]]
,

i.e., of the form
[[

(1, 0),

(√
1 + Cos α

2
, (sgn Sin α)

√
1− Cos α

2

)]]
+ k·x, k ∈ {0, 1}.

Proof. In order to find all angles β for which β+β = α, we take β = [[(1, 0), u]],
find 2β = [[(1, 0), (u2

1 − u2
2, 2u1u2)]], and solve algebraically the system of equations

(u2
1 − u2

2, 2u1u2) = (Cos α, Sinα), u2
1 + u2

2 = 1.

Define
A0 = {α ∈ A : Sin α ∈ [0, 1], Cos α ∈ [0, 1]}.

Due to Prop. 12, the sine and cosine functions are periodic with period 4 Á and the
values in the quadrant A0 determine uniquely all their values.

Proposition 12. For all α ∈ A, there hold

Sin(Á −α) = Cos α,

Cos(Á −α) = Sin α,

Sin(2· Á −α) = Sin α,

Cos(2· Á −α) = −Cos α,

Sin(2· Á +α) = − Sinα,

Cos(2· Á +α) = −Cos α,

Sin(4· Á −α) = − Sinα,

Cos(4· Á −α) = Cos α,

Sin(4· Á +α) = Sinα,

Cos(4· Á +α) = Cos α.
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5. Dyadic values and π

In this section, we shall determine many values of sine and cosine in the first
quadrant. Note that due to Prop. 8, for α = [[(1, 0), u]] where u1, u2 ∈ (0, 1), we
have Sin α = u2 > 0 and Cosα = u1 > 0.

Definition 5. For any α ∈ A0, denote α
2 =

[[
(1, 0),

(√
1+Cos α

2 ,
√

1−Cos α
2

)]]
.

In particular, note that �2 =
[[
(1, 0),

(√
2

2 ,
√

2
2

)]]
.

Proposition 13. For all α, β ∈ A0, there hold

Sinα± Sin β = 2 Sin
α± β

2
· Cos

α∓ β

2
,

Cos α + Cos β = 2 Cos
α + β

2
· Cos

α− β

2
,

Cos α− Cos β = −2 Sin
α + β

2
· Sin

α− β

2
,

whenever α±β
2 ∈ A0.

Def. 5 (see also Prop. 11) allows to calculate the values of sine and cosine for
any dyadic multiple of Á, i.e., for any angle from the set D· Á where

D =
{ m

2k
: k ∈ N ∪ {0},m ∈ Z ∩ [0, 2k]

}
.

Indeed, the steps are the following: halving the right angle k times and then adding
m copies of the result.

It is well known that D = [0, 1], i.e., the set D is dense in [0, 1].

Proposition 14. For every k ∈ N, we have

Sin
(

1
2k
· Á

)
=

1
2
·

√

2−
√

2 +
√

2 + . . . +
√

2
︸ ︷︷ ︸

k radicals

,

Cos
(

1
2k
· Á

)
=

1
2
·

√

2 +

√
2 +

√
2 + . . . +

√
2

︸ ︷︷ ︸
k radicals

.

Moreover,

(1) the sequences
(
Sin

(
1
2k · Á

))
k

and
(

Sin( 1
2k ·�)

Cos( 1
2k ·�)

)

k

are decreasing and converge
to 0;

(2) the sequence
(
2k Sin

(
1
2k · Á

))
k

is increasing, the sequence
(

2k · Sin( 1
2k ·�)

Cos( 1
2k ·�)

)

k

is

decreasing and these two sequences converge to the same limit Π > 0.
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Proof. The closed formulae can be proved by induction, relying on Prop. 11.

For the “moreover” part (1), denote ak = 2 Sin
(

1
2k · Á

)
and bk =

2 Sin( 1
2k ·�)

Cos( 1
2k ·�)

,

and note that the following recursions hold:

a1 =
√

2, ak+1 =

√
2−

√
4− a2

k,

b1 = 2, bk+1 =
2bk

2 +
√

4 + b2
k

.

Now, a2 =
√

2−√2 <
√

2 = a1, and since the function f(x) =
√

2−√4− x2 is
increasing on [0, 2], we can verify by induction that (ak) is decreasing. Similarly,

b2 = 4
2+2

√
2

< 2 = b1, and g(x) = 2x
2+
√

4+x2 = 2
(

2
x +

√
1 + 4

x2

)−1

is increasing on
[0, 2], hence (bn) is decreasing. The limit value can be obtained by taking limits in
the recursions.

For part (2), note that 2f(x) > x and 2g(x) < x for all x ∈ (0, 2), hence the
sequences (2kak) and (2kbk) are strictly increasing and decreasing, respectively. By
induction, one can show that

a2
k =

4b2
k

4 + b2
k

, k ∈ N.

As (2kbk) is convergent (it is decreasing and bounded by 0 from below), we have

lim
k

4ka2
k = lim

k

4 · 4kb2
k

4 + b2
k

= lim
k

4kb2
k.

Remark 1. Prop. 14 is essentially IMC 2001 Second day Problem 2 [2].

Remark 2. As the sequences (2kak) and (2kbk) are strictly increasing and
decreasing, respectively, we have Π > 2a1 = 2

√
2 and Π < 2b1 = 4.

Remark 3. The Viète formula

2
π

= lim
k

√
2

2
·
√

2 +
√

2
2

·

√
2 +

√
2 +

√
2

2
· . . . ·

√

2 +

√
2 +

√
2 + . . . +

√
2

︸ ︷︷ ︸
k radicals

2

dates back to already 1593 [6]. Moreover,

√
2

2
·
√

2 +
√

2
2

·

√
2 +

√
2 +

√
2

2
· . . . ·

√

2 +

√
2 +

√
2 + . . . +

√
2

︸ ︷︷ ︸
k radicals

2
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=
(

Cos
(

1
2
· Á

))
·
(

Cos
(

1
22
· Á

))
·
(

Cos
(

1
23
· Á

))
· . . . ·

(
Cos

(
1
2k
· Á

))

=
(

Cos
(

1
2
· Á

))
·
(

Cos
(

1
22
· Á

))
·
(

Cos
(

1
23
· Á

))
· . . . ·

(
Cos

(
1
2k
· Á

))
· 2k Sin

(
1
2k · Á

)

2k Sin
(

1
2k · Á

)

=
Sin(Á)

2k Sin
(

1
2k · Á

) =
1

2k Sin
(

1
2k · Á

) =
2

2kak
→ 2

Π
, as k →∞.

Due to Remark 3, we shall denote π = Π further on.

Remark 4. In order to find all angles α for which α + α + α =Á, we take
α = [[(1, 0), u]], find 3α = [[(1, 0), (4u3

1−3u1, 3u2−4u3
2)]], and solve algebraically the

system of equations

(4u3
1 − 3u1, 3u2 − 4u3

2) = (0, 1), u2
1 + u2

2 = 1.

We obtain that (u1, u2) ∈ {(0,−1), (±
√

3
2 , 1

2 )}. The only such α that belongs to A0

is [[(1, 0), (
√

3
2 , 1

2 )]].

6. Sine and cosine on the real line

For a real number a and a positive real number b, we denote by a mod b
the least non-negative number c such that b | a − c, i.e., such that there exists
an integer x such that bx = a − c. (Such a number c always exists since the set
{x ∈ Z : a− bx ≥ 0} is non-empty: we have a− b · ⌊−|a| · d 1

b e
⌋ ≥ 0.)

Consider (R,+) as a group with respect to ordinary addition.

Proposition 15. For any group homomorphism ϕ : R→ A (i.e., a function
that preserves group operation) such that ϕ(π

2 ) =Á, its behaviour is fully described
by ϕ|[0,π]. The same applies to the corresponding functions Sin ◦ϕ,Cos ◦ϕ : R→ R.

Proof. Straightforward verification shows that

ϕ(π) = ϕ(π
2 + π

2 ) = ϕ(π
2 ) + ϕ(π

2 ) =Á + Á=x,

ϕ(2π) = 2ϕ(π) =x +x= 0,

hence, for any x ∈ R, firstly we have ϕ(x) = ϕ(x mod 2π), and now, assuming that
x ∈ [0, 2π), we have

ϕ(x) = ϕ

(
x mod π

2 +
⌊

x
π
2

⌋
· π

2

)
= ϕ(x mod π

2 ) +
⌊

x
π
2

⌋
· Á

where
⌊

x
π
2

⌋
= 1, 2, 3 if x ∈ [π

2 , π), x ∈ [π, 3π
2 ), or x ∈ [ 3π

2 , 2π), respectively.

The precise formulae for Sin ϕ(x) and Cos ϕ(x) (for arguments x ∈ (π
2 , 2π))

follow by Prop. 12.
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Our goal is to verify that (at least one) such ϕ exists and that Sin ◦ϕ and
Cos ◦ϕ satisfy the conditions of Theorem 1.

Proposition 16. Let ϕ : R → A be any group homomorphism such that
ϕ(π

2 ) =Á. For any dyadic multiple of π
2 , m

2k · π
2 ∈ D · π

2 , it holds

ϕ
( m

2k
· π

2

)
=

m

2k
· Á .

Proof. Note that for any x ∈ [0, π
2 ], we have ϕ(x) = ϕ(x

2 + x
2 ) = 2ϕ(x

2 ), hence
inductively ϕ( 1

2k · π
2 ) = 1

2k · Á.

Theorem 4. Let ϕ : R→ A be any group homomorphism such that ϕ(π
2 ) =Á.

For any x ∈ (D · π
2 ) \ {0}, there holds

0 < x(Cos ϕ(x)) < Sin ϕ(x) < x.

Proof. The inequality 0 < Cos ϕ(x) is trivial, as ϕ[(D · π
2 ) \ {0}] ⊆ A0 \ {0}.

The other two inequalities will be proven by induction. The base case is with
numerator 1. Assume x = 1

2k
π
2 , then ϕ(x) = 1

2k · Á. Hence we have to prove that

2 · 2k Sin
(

1
2k
· Á

)
< π, 2 · 2k Sin

(
1
2k · Á

)

Cos
(

1
2k · Á

) > π,

that is a direct consequence of Prop. 14.

Now, if x and y are of the form m
2k

π
2 for which the desired inequalities already

hold then

Sin ϕ(x + y) = Sin(ϕ(x) + ϕ(y)) = (Sin ϕ(x))(Cosϕ(y)) + (Cos ϕ(x))(Sinϕ(y))

≤ Sin ϕ(x) + Sin ϕ(y) < x + y,

Sin ϕ(x + y)
Cos ϕ(x + y)

=
Sin(ϕ(x) + ϕ(y)
Cos ϕ(x) + ϕ(y)

=
Sin ϕ(x)
Cos ϕ(x) + Sin ϕ(y)

Cos ϕ(y)

1− Sin ϕ(x)
Cos ϕ(x) · Sin ϕ(y)

Cos ϕ(y)

≥ Sin ϕ(x)
Cos ϕ(x)

+
Sin ϕ(y)
Cos ϕ(y)

> x + y.

The next proposition implies that the sine and cosine are monotone and con-
tinuous on dyadic multiples of right angle.

Proposition 17. Let ϕ : R → A be any group homomorphism such that
ϕ(π

2 ) =Á. For x, y ∈ D · π
2 , there holds:

x < y ⇒
{

Cos ϕ(x) > Cos ϕ(y),
Sinϕ(x) < Sinϕ(y),
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and

|Cos ϕ(x)− Cos ϕ(y)| ≤ |x− y|, | Sinϕ(x)− Sinϕ(y)| ≤ |x− y|.

Proof. Note that if t, t′ ∈ D (assume t > t′) then

ϕ(t · π
2 )± ϕ(t′ · π

2 )
2

=
t· Á ±t′· Á

2
=

(t± t′)· Á
2

=
t± t′

2
· Á= ϕ

(
t± t′

2
· π

2

)
,

since t−t′
2 ∈ D.

Now, if y > x (hence y±x
2 ∈ D · π

2 ) then due to Prop. 13 and Theorem 4, we
have

Sinϕ(y)− Sinϕ(x) = 2
(

Cos
ϕ(y) + ϕ(x)

2

)
·
(

Sin
ϕ(y)− ϕ(x)

2

)
> 0,

Cos ϕ(y)− Cos ϕ(x) = −2
(

Sin
ϕ(y) + ϕ(x)

2

)
·
(

Sin
ϕ(y)− ϕ(x)

2

)
< 0.

Therefore

|Cos ϕ(x)− Cos ϕ(y)| = 2
∣∣∣∣Sin

ϕ(x) + ϕ(y)
2

∣∣∣∣ ·
∣∣∣∣Sin

ϕ(x)− ϕ(y)
2

∣∣∣∣

≤ 2 · |x− y|
2

= |x− y|,

analogously for the sine.
The following proposition is a direct consequence of Prop. 17.

Proposition 18. Let ϕ : R → A be any group homomorphism such that
ϕ(π

2 ) =Á. Let (xn) and (x′n) be sequences whose elements belong to D · π
2 . Let

limn(xn − x′n) = 0. Then

lim
n

(Cosϕ(xn)− Cos ϕ(x′n)) = 0, lim
n

(Sin ϕ(xn)− Sinϕ(x′n)) = 0.

Theorem 5. Let ϕ : R→ A be any group homomorphism such that ϕ(π
2 ) =Á.

The functions (D · π
2 ) 3 x 7→ Sin ϕ(x) ∈ [0, 1] and (D · π

2 ) 3 x 7→ Cos ϕ(x) ∈ [0, 1]
have uniformly continuous extensions to [0, π

2 ].
First part of proof of Thm. 5. Prop. 18 yields that for t ∈ [0, 1], the limits

(1) lim
n

Cos ϕ(tn · π
2 ), lim

n
Sinϕ(tn · π

2 ), tn ∈ D, tn → t.

exist and are independent on the choice of the sequence (tn).
Indeed, since the sequence (tn) is convergent, it is Cauchy; now an argument

similar to that of Prop. 18 yields that the sequences (Cos ϕ(tn· π2 )) and (Sin ϕ(tn· π2 ))
are also Cauchy, hence convergent.
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Prop. 18 also yields that the limits (1) do not depend on the choice of the
sequence.

The proof of (uniform) continuity will be postponed until we denote the ex-
tensions.

Definition 6. Define a mapping ϕ : R→ A as follows:
• for all t ∈ D, we define ϕ(t · π

2 ) = t· Á,
• for all x ∈ [0, π

2 ] we define ϕ(x) = (limn Sinϕ(xn), limn Cos ϕ(xn)) where (xn)
is any sequence in D · π

2 and converging to x,
• for all x ∈ R, we define ϕ(x) = ϕ(x mod (2π)) and if x ∈ [0, 2π) then ϕ(x) =

ϕ(x mod π
2 ) +

⌊
x
π
2

⌋
· Á.

Denote
s(x) = Sinϕ(x), c(x) = Cos ϕ(x), x ∈ R.

Proposition 19. The mapping ϕ defined as in Def. 6 is a group homomor-
phism.

Continuation of proof of Thm. 5. Fix ε > 0. We prove that for all x, y ∈ R,

|x− y| < ε

2
⇒

{ |s(x)− s(y)| < ε,

|c(x)− c(y)| < ε.

It suffices to consider [0, π
2 ] only. Take sequences (xn), (yn) with members from

D · π
2 and xn → x, yn → y. Now

|c(x)− c(y)| = lim
n
|Cos ϕ(xn)− Cos ϕ(yn)| ≤ lim

n
|xn − yn| = |x− y| < ε.

The function s is treated analogously.
Due to Prop. 10 we already have

Theorem 6. For all x, y ∈ R, there holds

c(x− y) = c(x)c(y) + s(x)s(y).

Theorem 7. There holds

lim
x→0+

s(x)
x

= 1.

Proof. Due to Theorem 4, there holds

0 ≤ xc(x) ≤ s(x) ≤ x, x ∈ (0, π
2 ),

hence

c(x) ≤ s(x)
x

≤ 1, x ∈ (0, π
2 ).

It remains to note that lim
x→0+

c(x) = c(0) = 1.
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Due to Theorem 1, s and c coincide with sin and cos (ordinary sine and cosine),
respectively. Hence, further on we only use the symbols sin and cos.

7. Inverse trigonometric functions

Proposition 20. The functions sin and cos from [0, π
2 ] to [0, 1] are bijections.

Proof. The sine and cosine functions are strictly monotone when restricted
to D · π

2 (see Prop. 17). Assume that there are numbers x, x′ ∈ [0, π
2 ], x < x′

such that sin x = sin x′. Find x1, x2 ∈ D · π
2 such that x < x1 < x2 < x′, then

sin x ≤ sin x1 < sin x2 ≤ sin x′, a contradiction. The cosine function is strictly
decreasing for a similar reason.

Surjectivity of sin |[0, π
2 ] : [0, π

2 ] → [0, 1] and cos |[0, π
2 ] : [0, π

2 ] → [0, 1] follows
from the Bolzano–Cauchy theorem: a function f that is continuous in the interval
[a, b] attains all values between f(a) and f(b).

Proposition 21. The functions sin : [−π
2 , π

2 ] → [−1, 1] and cos : [0, π] →
[−1, 1] are bijections.

Proof. For the sine, the correspondences [−π
2 , 0] ↔ [−1, 0] and [0, π

2 ] ↔ [0, 1]
can be treated separately, due to sin(−x) = − sinx. The same about the cosine.

Prop. 21 allows to define the inverse functions of the sine and cosine. Their
domain is [−1, 1], they are both continuous and strictly monotone.

The treatment of the homomorphism ϕ in the previous chapter left open the
question whether all angles (elements of A) are images of some real number. This
question will be resolved now.

Proposition 22. The restriction of the group homomorphism ϕ : R → A,
the function ϕ|[0,2π) : [0, 2π) → A, is a group isomorphism.

Proof. It suffices to prove that ϕ|[0, π
2 ] : [0, π

2 ] → A0 is bijective. As sin and cos
are bijective in this interval, ϕ is injective there. Now for any α = [[(1, 0), (u, v)]]
where u2 + v2 = 1 and u, v ∈ [0, 1], we have sin x = u and cos x =

√
1− (sinx)2 =√

1− u2 = v, hence ϕ(x) = α.

Prop. 22 allows to define the size of an angle α as
(
ϕ|[0,2π]

)−1 (α) ∈ [0, 2π).
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