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CONVEX LATTICE PENTAGON WITH THREE PAIRS
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Abstract. This paper investigates convex lattice pentagons with at least three
pairs (a;,d;), where a; || d;, i.e., diagonals parallel to sides. Based on the given
conditions, we will form a system of Diophantine equations whose solutions we seek
within the set of natural numbers or positive rational numbers. To characterize all
obtained convex lattice pentagons of minimal area, we will use the concept of integer
unimodular transformations. Specifically, these transformations of the plane preserve
the parallelism of lattice segments, the number of lattice points inside a convex lattice
polygon and on its boundary, as well as its area. We will then determine the minimum
area of the pentagon in each resulting class and identify the pentagon with the smallest
diameter. Finally, we will determine all convex lattice pentagons in which three sides
are respectively parallel to three diagonals.
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1. Introduction

Let a Cartesian coordinate system be defined in the plane. A point with
integer coordinates is called a lattice point. A lattice segment is a line segment
connecting two lattice points. A lattice segment is said to have lattice length & if
it contains exactly k — 1 lattice points in its interior. A lattice vector is the vector
joining two lattice points. A polygon whose vertices are lattice points is called a
lattice polygon. A lattice polygon in which all interior angles are less than 180° is
called a convex lattice polygon.

The area of a lattice polygon can be determined using Pick’s Theorem [2]:

b
S z+2 )

where 7 is the number of lattice points inside the polygon and b is the number of
lattice points on its boundary. It follows from Pick’s Theorem that the minimal

area of a lattice polygon (specifically, a lattice triangle) is % A lattice triangle

with area % is called a fundamental triangle. For the area of triangle OAB, whose
vertices are 0(0,0), A(x1,y1) and B(x2,y2), and which is positively oriented, we

will also use the following formula:

1
S = 5(33192 — T2Y1).
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For the study of the area of convex lattice polygons, a particularly important
role is played by plane transformations that map a fundamental triangle to another
fundamental triangle. Such transformations preserve the area of a convex lattice
polygon and are fully determined by a 2 X 2 integer matrix whose determinant
belongs to the set {—1,1}.

DEFINITION 1. A square matrix V is called unimodular if detV € {—1,1}.
A linear transformation is called unimodular if its matrix (in the standard basis
of R?) is unimodular. A linear transformation is called integer unimodular if its
matrix is both integer and unimodular.

DEFINITION 2. The composition of a unimodular transformation and a trans-
lation is called a unimodular affine transformation. The composition of an integer
unimodular transformation and an integer translation (i.e., translation by a lattice
vector) is called an integer unimodular affine transformation, or lattice equivalence.
Two lattice polygons are said to be lattice equivalent if there exists a lattice equiv-
alence that maps one polygon onto the other.

The most important properties of integer unimodular transformations are stat-
ed in the following theorem.

THEOREM 1. [3] An integer unimodular transformation preserves the number
of lattice points in a convex lattice polygon and on its boundary. The composition
of two integer unimodular transformations is itself an integer unimodular transfor-
mation.

REMARK. The term integer unimodular transformation used in this paper is
synonymous with integral unimodular transformation, as used in [3]. Both refer to
linear transformations represented by matrices with integer entries and determi-
nant +1.

The following theorem is an immediate consequence of Theorem 1.

THEOREM 2. Any two fundamental triangles are lattice-equivalent. In par-
ticular, every fundamental triangle is lattice-equivalent to the triangle with vertices
(0,0), (1,0), and (0,1).

In the convex pentagon A;AsA3A4As, we denote in order: a; = A;A;41 as

the side vectors, a; = A;A;+1 as the sides, and a; as their lengths, where i €
_
{1,2,...,5}, Ag = A5, Ag = A;1. To each side vector a;, = A;A; 11, we associate
. . -

the corresponding diagonal vector d; = A;_1A;4+2, where A7 = As, and we denote
d; as the diagonal A;_1A;4+2 and its length.

From the condition that d; || a;, it follows that d; = k;a;, for some k; > 0,
ie.,
(1) a;—1 —+ a; + ai+1 = k:lal

The positive number k; = Zf for which (1) holds is called the parallelism coefficient
of the diagonal d; and the side a;.
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If three vertices A, B, and C of a parallelogram ABC'D are lattice points, then
the equality AD = BC holds, from which it follows that the fourth vertex D is
also a lattice point. Likewise, if the coordinates of points A, B, and C' are rational,
and 7 is a rational number such that AD = r BC , then the coordinates of point D
are also rational. Based on this, we conclude that the parallelism coefficients k; in
equalities (1) are positive rational numbers.

Let the points A(x1,y1), B(za,y2), C(xs,ys3) and D(x4,ys) satisfy the rela-
tion OD = kAB (k > 0). Then, for positive numbers « and [, the four points
Al_(oz)xl,,é’yli)Bl(omvg,ﬁyg)7 C1(azxs, Bys) and Di(axy, Pys) satisfy the equality
C1D, = kA By, which is easily verified. This means that the line segments Cy D1
and Aj B are parallel, with the same parallelism coefficient &k as the line segments
CD and AB. The transformation that assigns the point (x,y) to the point (az, By)
is called a homothety with respect to the coordinate axes, with coefficients o and (.

LEMMA 1. [1] In a convex lattice pentagon, the condition d; || a; cannot hold
for all i € {1,2,3,4}.

Proof. Assume that in a convex lattice pentagon, d; || a; for i € {1,2,3,4},
i.e., that there exist positive rational numbers k; such that
(2) a1 +a;+a;41 =ka;, i€{1,2,3,4}.
From this, for ¢ = 2 and ¢ = 3, we have, respectively,
a; = kpag —az —ag = (ko — 1)az — ag,
ay = kzag —as —az = —as + (k3 — 1)as.

On the other hand, using the equality a; + as + a3 + a4 + a5 = 0 and the equalities
(2) for i =4 and i = 1, we further obtain that

a; = —ag — (a3 + a4 + a5) = —ag — kyay
= —ag — k4(k3a3 —ag — a3) = (k‘4 — 1)32 — k4(k3 — 1)33,
ay = —(35 —+ ap +a2) —agz — —k1a1 — as

= —kl(kgag — ag — a3) —az = —kl(kig — 1)a2 —+ (k‘l — 1)&3.
By equating the corresponding coefficients of the vectors as and ag in the obtained
expressions for a; and ay, from the previous four equalities we get that ko — 1 =
ky—1,
(3) 1 =ky(ks — 1),
(4) 1=ki(ko — 1),
and k3 —1 = k1 — 1. Tt follows that k4 = ky and k3 = ki1, so by substituting into
equation (3), we obtain 1 = ka(k; — 1). From this and equation (4), it follows that
k1 = ko, which implies k1 = ko = ks =ks =k, and that k2 —k—1 =0, i.e.

|
loy = oy = kg = kg = k — *2\/5.

is an irrational number, we obtain a contradiction. m

Since %
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It follows from the previous lemma that the following statement holds:

THEOREM 3. [1] In a convex lattice pentagon, at most three relations of the
form d; || a; can hold.

Figure 1 shows an example of a convex lattice pentagon in which the relations
dy || a1, da || a2 and dy || a4 hold.

LEMMA 2. If in a convex pentagon it holds that dy = k1a; and ds = koas,
(/451,]412 > O), then k1 > 1 and ky > 1.

Proof. Let A1A3A3A4A5 be a convex pentagon such that d; = kja; and
dy = koay, and let D be the point such that A1 As A3 D is a parallelogram. Due to
the convexity of the given pentagon, it follows that point A4 lies on the extension of
the segment A; D beyond the vertex D, and that point A lies on the extension of
the segment A3D beyond D. Thus, from the equalities d; = k1a; and ds = keas,
we obtain that d; > a1 and dy > as, that is, k; > 1 and ky > 1. m

2. Main results

In this section, we consider convex lattice pentagons under given parallelism
conditions d; || a; between certain diagonals and sides. From Theorem 3, it follows
that at most three such conditions can hold in a convex lattice pentagon. We now
examine convex lattice pentagons in which exactly three such parallelism conditions
hold.

Let a convex lattice pentagon satisfy three relations of the form d; || a;. Since
a translation by a lattice vector is an isometry that maps lattice points to lattice
points, we may assume (without loss of generality) that one vertex of the pentagon
lies at the origin. Let As = (0,0). There are now essentially two distinct cases to
consider.

2.1 Convex lattice pentagons with given conditions d; || a1, da || a2 and
dy || as

Let p, ¢ be natural numbers such that (p,q) =1 and p > ¢ > 1.

Let M; denote the set of all convex lattice pentagons of minimal area that
satisfy the conditions dy || a1, da || a2 and dy || a4. Also, let Pi(p,q) denote the
set of all convex lattice pentagons with parallelism coefficients ky = ko = § and
ky = fzq and let M (p, ¢) be the subset of such pentagons with minimal area.

THEOREM 4. 1) Every element of My has area 5/2, parallelism coefficients
k1 = ko =2 and ky = 1, and is lattice-equivalent to a convex lattice pentagon in

which d; || a; fori € {1,2,4}, as shown in Figure 1.

2) For every pair of natural numbers p and q such that (p,q) =1 andp > q >
1, there exists a convex lattice pentagon with parallelism coefficients k1 = ko = %
and ky = ﬁ, i.e., the set P1(p,q) is non-empty.
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3) Every element of M1(p,q) has area %(p2 +¢?). Every element of P1(p,q)
can be obtained from some element of M1 (p, q) by applying a homothety with integer
coefficients along the coordinate azxes, followed by a translation by a lattice vector.

4) The minimal diameter among the elements of My is \/5, and it is attained
by the pentagon shown in Figure 1.

o a N
Ay 2 A0 X

Figure 1. A convex lattice pentagon in which d; || ai, 1 € {1, 2, 4}

Proof. 1) Based on (1), there exist positive rational numbers ki, ko, and ky
such that the following holds (Figure 1):

(5) as +a; +a = kay,
(6) a; +ap + az = koay,
(7) as + ay + as = k4a4.

From (5) and (6), we obtain that
as = kia; —a; —ag, a3 = keas —a; — as.
Now, since a; + as + az + a4 + a5 = 0, it follows that
ay = —(a1 taz +ag) —as = —kqaz — k1a1 +a; +ag,
By substituting these values for ag,as and a; into (7), we get

koas —a; —as +a; +ag — koag — kja; + kja; —a; —ap

= k4(a1 +as — k1a1 — kgag).

By simplifying, we obtain in sequence that:

(k1k4—k4—1)a1+(k2k4—k4—l)a2:0,
k1k4—k‘4—1=0 and k2k4—k‘4—1:0.

By subtracting the last two equations, we obtain k4(k; — k) = 0. Since kg4 is a
positive number, it follows that ki = ko. Therefore, the following equalities hold:

1
ki=1+— = ko.
1 +k4 2
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Let us denote k1 = ks = k and kg = ﬁ According to Lemma 2, we have
k > 1. We now construct a convex pentagon A} A, AL A} AL with these parallelism
coefficients, where three of its vertices are A] = (0,1), A, = (0,0) and A5 =
(1,0). From the equalities A} A} = kAL Ay and A5 AL = kAL AY, it follows that the
remaining two vertices are A} = (k,1) and Af = (1, k). At this point, we have

ag=AyAs = (1—k)i+(k—-1)j=(k-1)(=i+]) = (k- 1)A34] = (k — 1)d4,

ile. dy = ﬁa;l = kyqay. Thus, in the convex pentagon whose vertices are

(8) All = (Oa 1)7 A/2 = (0’0)7 Aé = (1’0)7 Ail = (k’ 1)7 A{’S = (Lk) (k > 1);

1

—1°

The lattice point D = (1, 1), by Lemma 2, lies in the interior of the convex pen-
tagon A AL AL A) AL, For k = 2, we obtain a convex lattice pentagon A As A3 A4 A5
with vertices A1(0,1), A2(0,0), A3(1,0), A4(2,1) and A5(1,2) in which the coeffi-
cients of parallelism are ky = k2 = 2 and k4 = 1 (see Figure 1). The area of this
pentagon, according to Pick’s Theorem, is given by

5 5

b
S=ito_1=142_1="2
ity *3 2

the coefficients of parallelism are ky = ko = k and kg =

which is the minimal possible area of a convex lattice pentagon.

Every such convex lattice pentagon with area % is lattice-equivalent to the pen-

tagon Ay Ay A3 A4 As shown in Figure 1. Indeed, if By By B3 B, Bs is a convex lattice
pentagon of area g, it follows from the above that its coefficients of parallelism are
k1 = ko =2 and k4 = 1. By Theorems 1 and 2, there exists a lattice equivalence
mapping the triangle A; A A3 onto the triangle By ByB3. The points By and Bs
are uniquely determined by the conditions By B4y = 2B2Bs and B3Bs; = 2B2B;.

2) Since the coefficients of parallelism in a convex lattice pentagon are positive
rational numbers, we have

p
k:§7 p,qEZ, (paq)zlv p>QZ1

If we substitute this value of k into (8) and multiply all coordinates of the resulting
pentagon by g, we obtain a convex lattice pentagon with vertices

(9) A1(07q)7 A2(070)7 AS(Qﬂ 0)7 A4(p7 Q)7 A5(Q7p)7

and the coefficients of parallelism are k1 = ks = £ and k4 = —L-. Its area is equal

to the sum of areas of the triangles As AzAy, AsA4As and A3 A5 Aq, and is given by

1 1
5=§(q2—0+p2—q2+q2—0)=§(p2+q2)-

Since p > ¢ > 1, it is clear that this area is minimal when p = 2 and ¢ = 1, i.e., for
the convex lattice pentagon shown in Figure 1.
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3) Let a lattice unimodular transformation be defined by the matrix

A:[z Z}, a,b,c,d € Z, l|ad—bc| = 1.

This transformation maps the vertices of the convex lattice pentagon given in (9)
to the vertices
(10) Bi(bg,dq), B2(0,0), Bs(ag,cq), Bi(ap+bg,cp+dq), Bs(aq+bp,cq+dp),

which form a convex lattice pentagon of the same area S = %(p2 + ¢%), and with

the same coefficients of parallelism k; = ko = g and ky = fzq.

4) Let us show that the minimal diameter of the pentagon given in (10) is
equal to V5. We will prove that

max{B1 By, B3Bs, By By} > /5.

Assume the contrary. Then B;B,? < 5 and B3Bs? < 5, from which we successively
obtain:

(ap)? + (ep)? = p*(a* +¢*) <5 and (bp)* + (dp)* = p*(b* + d?) < 5.
Since p > 2, it follows that
a?+c2<1 and P +d?><1.
Since |ad — be| = 1, it cannot be a? + ¢ = 0 or b? +d? = 0, and thus we must have:
(11) a®>+c=1 and bV +d*=1.
Now, using the identity
(12) (ab+ cd)* + (ad — be)? = (a® + &) (b* + d?),
it follows that ab + ¢d = 0, and using (11) we obtain
ByBy? = (ap +bq)? + (cp + dq)? = p*(a® + ) + ¢*(b* + d?) + 2pq(ab + cd)
=p°+4¢*>5,
i.e., BoBs = /5. This is a contradiction. m

2.2 Convex lattice pentagons with given conditions d; || a1, d2 || a2 and
ds || a3

Let p, ¢ be natural numbers such that (p,q) =1 and p > ¢ > 1.

Let M5 denote the set of all convex lattice pentagons of minimal area that
satisfy the conditions dy || a1, do || a2 and ds || as. Also, let Pa(p,q) denote the

set of all convex lattice pentagons with parallelism coefficients ky = k3 = % and

ko = pTTq, and let Mas(p, q) be the subset of such pentagons with minimal area.
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THEOREM 5. 1) Every element of Moy has area 4, parallelism coefficients
ki = ks =2 and ko = %, and is lattice-equivalent to a convez lattice pentagon in
which d; || a; fori € {1,2,3}, as shown in Figure 2.

2) For every pair of natural numbers p and q such that (p,q) =1 andp > q >
1, there exists a convex lattice pentagon with parallelism coefficients k1 = ks = 2

q
and ko = pp#, i.e., the set Pa(p,q) is non-empty.

3) Every element of Ma(p,q) has area %p(p + 2q). Every element of Pa(p,q)
can be obtained from some element of Ma(p, q) by applying a homothety with integer
coefficients along the coordinate azxes, followed by a translation by a lattice vector.

4) The minimal diameter among the elements of My is v/10, and it is attained
by the pentagon shown in Figure 2.

5) Every convex lattice pentagon with at least three pairs of parallel sides and
diagonals belongs to exactly one of the sets Py(p,q) or Pa(p,q).

y
A5
a
5 a 4
A
1< Ay
d d
a 3 1
1 as
d o % .
a
A, 2 Ay

Figure 2. A convex lattice pentagon in which d; || a;, 1 € {1, 2, 3}

Proof. 1) Based on (1), there exist positive rational numbers k1, ko and ks
such that (see Figure 2):

(13) as +a; +az = kiay,
(14) a; + ap + a3 = kpag,
(15) az +az t+ag = k3a3.

Since a; + as + ag + a4 + a5 = 0, by adding equalities (13) and (15), we obtain
(16) kia; + ksag —ag = 0.

From (14), it follows that ag = ksas — a; — ag, and by substituting into (16), we
obtain

kiay + k3(koas —a; —ap) —ap =0,

(kl — kg)al + (kgkg — kg — 1)32 = 0,
from which we obtain k1 — ks = 0 and koks — ks — 1 = 0. It follows that k3 = Kk
and k‘gkl = kl + 1, i.e.,
1

ko =1 .
2 +k1
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Let ki = k. Then ky = 14 1 and k3 = k. By Lemma 2, we have k > 1. Let us
construct a convex pentagon A} A4 A5 Al AL, with these parallelism coefficients, and
with three of its vertices given by A}(0,1), A5(0,0), A%(1,0). From the equalities
_

AL A = (1+4)Ay Ay and A5 AL = kAS A} we obtain that the remaining two vertices
are A} = (1+ 1,1), A = (1,k). We have

- L. . 1. . 1= 1
ag = AzAy = 7 +j= %(1—1— kj) = %A2A5 = Edg,,
that is, d3 = kasz = kszaz. Therefore, in the convex pentagon with vertices

the parallelism coefficients are k1 = ks = k and ky = 1 + %

¥
By Ag
&
B
1 B, Ay
d d
a 3 1
1 33
s »F X
B, BS A3

Figure 3. A convex lattice pentagon in which d; || a;, 1 € {1, 2, 3}

For k = 2, we obtain a convex pentagon By By BsB,Bs with vertices By(0,1),
B5(0,0), Bs(1,0), B4(2,1), B5(1,2) and parallelism coefficients k1 = k3 = 2 and
ko = % (see Figure 3). By multiplying the first coordinates of this pentagon by 2,
we obtain a convex lattice pentagon By By A3A4As with the same parallelism coef-
ficients and vertices B1(0,1), B2(0,0), A3(2,0), A4(3,1) and A5(2,2). The area of
this pentagon, according to Pick’s Theorem, is given by

b 6
S—ifo—l1=24-—1=4
ity *3 :

which is the minimal possible area of a convex lattice pentagon in which dy || a1,
dy || az and ds || a3 (see Figure 2).

2) Since the coefficients of parallelism in a convex lattice pentagon are positive
rational numbers greater than 1, we have

p
k:§7 paqEZa (paQ):17 p>QZ1

If we substitute this value of k into (17) and multiply the first coordinates of the
resulting pentagon by p, and the second coordinates by ¢, we obtain a convex lattice
pentagon with vertices

(18) A1(0,q), A2(0,0), Az(p,0), As(p+4q,9), As(p,p)
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and the coefficients of parallelism are k| = k3 = g and ky = pTqu. Its area is equal
to the sum of areas of the triangles As A3Ay, Ao AyAs and A3 A5 Aq, and is given by

1 1
S = §(pq—0+(p+Q)p—pq+pq—0)= §P(p+QQ)~

It is clear that this area will be minimal when p = 2 and ¢ = 1, i.e., S = 4 for a
convex lattice pentagon in which d; || a1, ds || az and ds || a3 (see Figure 2).

3) Let a lattice unimodular transformation be defined by the matrix

A= [“ b} . abedeZ, |ad—be =1.
c d

This transformation maps the vertices of the convex lattice pentagon given in (18)

to the vertices B (bg, dq), B2(0,0), Bs(ap,cp), Bai(ap + aq + bq, cp + cq + dq) and

Bs(ap + bp, cp + dp), which form a convex lattice pentagon of the same area S =

%p(p—l—Qq), and with the same coefficients of parallelism ki = k3 = % and ko = p#.

4) Let us show that the minimal diameter of the pentagon By BsBsByBs is
equal to v/10. We will prove that

max{B1 By, BoBy, B1 B3} > V10.

Assume the contrary. Then By B2 < 10, from which we get (ap+aq)?+(cp+cq)? <
9, or equivalently, (a® + c?)(p+ ¢)?> < 9. Since a®> +¢* > 1,p>2and ¢ > 1, it
follows that a2 +c¢? =1, p =2, ¢ = 1. Thus, the vertices of the pentagon are

By(b,d), Bz(0,0), Bs(2a,2c), B4(3a+ b,3c+ d) and Bs(2a + 2b, 2¢ + 2d).

Let us denote m = ab+cd. Now, from ByB4? < 10, we obtain (3a+b)2+ (3c+d)? <
9, or equivalently 9(a? + ¢?) + b2 + d? + 6m < 9. Since a? + ¢? = 1, it follows that
b2 + d? < —6m, and therefore m < 0.

Furthermore, from B;B3? < 10, we obtain (2a — b)? + (2¢ — d)?> < 9, or
equivalently 4(a? + ¢?) + b*> + d*> — 4m < 9. Since a® + ¢ = 1, it follows that
b2+ d?> <5+4m,ie.,

(19) 1< b +d* <5+4m.

It follows that 1 < 5+ 4m, i.e., —1 < m. Hence, —1 < m < 0, so m = —1. For
m = —1, from (19) we obtain b* + d? = 1. Equation (12) now becomes m?+1 = 1,
which implies m = 0. A contradiction. m
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