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Vahidin Hadžiabdić

Abstract. This paper investigates convex lattice pentagons with at least three
pairs (ai, di), where ai ‖ di, i.e., diagonals parallel to sides. Based on the given
conditions, we will form a system of Diophantine equations whose solutions we seek
within the set of natural numbers or positive rational numbers. To characterize all
obtained convex lattice pentagons of minimal area, we will use the concept of integer
unimodular transformations. Specifically, these transformations of the plane preserve
the parallelism of lattice segments, the number of lattice points inside a convex lattice
polygon and on its boundary, as well as its area. We will then determine the minimum
area of the pentagon in each resulting class and identify the pentagon with the smallest
diameter. Finally, we will determine all convex lattice pentagons in which three sides
are respectively parallel to three diagonals.
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1. Introduction

Let a Cartesian coordinate system be defined in the plane. A point with
integer coordinates is called a lattice point. A lattice segment is a line segment
connecting two lattice points. A lattice segment is said to have lattice length k if
it contains exactly k − 1 lattice points in its interior. A lattice vector is the vector
joining two lattice points. A polygon whose vertices are lattice points is called a
lattice polygon. A lattice polygon in which all interior angles are less than 180◦ is
called a convex lattice polygon.

The area of a lattice polygon can be determined using Pick’s Theorem [2]:

S = i +
b

2
− 1,

where i is the number of lattice points inside the polygon and b is the number of
lattice points on its boundary. It follows from Pick’s Theorem that the minimal
area of a lattice polygon (specifically, a lattice triangle) is 1

2 . A lattice triangle
with area 1

2 is called a fundamental triangle. For the area of triangle OAB, whose
vertices are O(0, 0), A(x1, y1) and B(x2, y2), and which is positively oriented, we
will also use the following formula:

S =
1
2
(x1y2 − x2y1).
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For the study of the area of convex lattice polygons, a particularly important
role is played by plane transformations that map a fundamental triangle to another
fundamental triangle. Such transformations preserve the area of a convex lattice
polygon and are fully determined by a 2 × 2 integer matrix whose determinant
belongs to the set {−1, 1}.

Definition 1. A square matrix V is called unimodular if det V ∈ {−1, 1}.
A linear transformation is called unimodular if its matrix (in the standard basis
of R2) is unimodular. A linear transformation is called integer unimodular if its
matrix is both integer and unimodular.

Definition 2. The composition of a unimodular transformation and a trans-
lation is called a unimodular affine transformation. The composition of an integer
unimodular transformation and an integer translation (i.e., translation by a lattice
vector) is called an integer unimodular affine transformation, or lattice equivalence.
Two lattice polygons are said to be lattice equivalent if there exists a lattice equiv-
alence that maps one polygon onto the other.

The most important properties of integer unimodular transformations are stat-
ed in the following theorem.

Theorem 1. [3] An integer unimodular transformation preserves the number
of lattice points in a convex lattice polygon and on its boundary. The composition
of two integer unimodular transformations is itself an integer unimodular transfor-
mation.

Remark. The term integer unimodular transformation used in this paper is
synonymous with integral unimodular transformation, as used in [3]. Both refer to
linear transformations represented by matrices with integer entries and determi-
nant ±1.

The following theorem is an immediate consequence of Theorem 1.

Theorem 2. Any two fundamental triangles are lattice-equivalent. In par-
ticular, every fundamental triangle is lattice-equivalent to the triangle with vertices
(0, 0), (1, 0), and (0, 1).

In the convex pentagon A1A2A3A4A5, we denote in order: ai =
−−−−→
AiAi+1 as

the side vectors, ai = AiAi+1 as the sides, and ai as their lengths, where i ∈
{1, 2, . . . , 5}, A0 ≡ A5, A6 ≡ A1. To each side vector ai =

−−−−→
AiAi+1, we associate

the corresponding diagonal vector di =
−−−−−−→
Ai−1Ai+2, where A7 ≡ A2, and we denote

di as the diagonal Ai−1Ai+2 and its length.
From the condition that di ‖ ai, it follows that di = kiai, for some ki > 0,

i.e.,

(1) ai−1 + ai + ai+1 = kiai.

The positive number ki = di

ai
for which (1) holds is called the parallelism coefficient

of the diagonal di and the side ai.
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If three vertices A, B, and C of a parallelogram ABCD are lattice points, then
the equality

−→
AD =

−→
BC holds, from which it follows that the fourth vertex D is

also a lattice point. Likewise, if the coordinates of points A, B, and C are rational,
and r is a rational number such that

−→
AD = r

−→
BC, then the coordinates of point D

are also rational. Based on this, we conclude that the parallelism coefficients ki in
equalities (1) are positive rational numbers.

Let the points A(x1, y1), B(x2, y2), C(x3, y3) and D(x4, y4) satisfy the rela-
tion

−→
CD = k

−→
AB (k > 0). Then, for positive numbers α and β, the four points

A1(αx1, βy1), B1(αx2, βy2), C1(αx3, βy3) and D1(αx4, βy4) satisfy the equality−−−→
C1D1 = k

−−−→
A1B1, which is easily verified. This means that the line segments C1D1

and A1B1 are parallel, with the same parallelism coefficient k as the line segments
CD and AB. The transformation that assigns the point (x, y) to the point (αx, βy)
is called a homothety with respect to the coordinate axes, with coefficients α and β.

Lemma 1. [1] In a convex lattice pentagon, the condition di ‖ ai cannot hold
for all i ∈ {1, 2, 3, 4}.

Proof. Assume that in a convex lattice pentagon, di ‖ ai for i ∈ {1, 2, 3, 4},
i.e., that there exist positive rational numbers ki such that

(2) ai−1 + ai + ai+1 = kiai, i ∈ {1, 2, 3, 4}.
From this, for i = 2 and i = 3, we have, respectively,

a1 = k2a2 − a2 − a3 = (k2 − 1)a2 − a3,

a4 = k3a3 − a2 − a3 = −a2 + (k3 − 1)a3.

On the other hand, using the equality a1 +a2 +a3 +a4 +a5 = 0 and the equalities
(2) for i = 4 and i = 1, we further obtain that

a1 = −a2 − (a3 + a4 + a5) = −a2 − k4a4

= −a2 − k4(k3a3 − a2 − a3) = (k4 − 1)a2 − k4(k3 − 1)a3,

a4 = −(a5 + a1 + a2)− a3 = −k1a1 − a3

= −k1(k2a2 − a2 − a3)− a3 = −k1(k2 − 1)a2 + (k1 − 1)a3.

By equating the corresponding coefficients of the vectors a2 and a3 in the obtained
expressions for a1 and a4, from the previous four equalities we get that k2 − 1 =
k4 − 1,

1 = k4(k3 − 1),(3)

1 = k1(k2 − 1),(4)

and k3 − 1 = k1 − 1. It follows that k4 = k2 and k3 = k1, so by substituting into
equation (3), we obtain 1 = k2(k1 − 1). From this and equation (4), it follows that
k1 = k2, which implies k1 = k2 = k3 = k4 = k, and that k2 − k − 1 = 0, i.e.

k1 = k2 = k3 = k4 = k =
1 +

√
5

2
.

Since 1+
√

5
2 is an irrational number, we obtain a contradiction.



78 Convex lattice pentagon with three pairs of parallel sides and diagonals

It follows from the previous lemma that the following statement holds:

Theorem 3. [1] In a convex lattice pentagon, at most three relations of the
form di ‖ ai can hold.

Figure 1 shows an example of a convex lattice pentagon in which the relations
d1 ‖ a1, d2 ‖ a2 and d4 ‖ a4 hold.

Lemma 2. If in a convex pentagon it holds that d1 = k1a1 and d2 = k2a2,
(k1, k2 > 0), then k1 > 1 and k2 > 1.

Proof. Let A1A2A3A4A5 be a convex pentagon such that d1 = k1a1 and
d2 = k2a2, and let D be the point such that A1A2A3D is a parallelogram. Due to
the convexity of the given pentagon, it follows that point A4 lies on the extension of
the segment A1D beyond the vertex D, and that point A5 lies on the extension of
the segment A3D beyond D. Thus, from the equalities d1 = k1a1 and d2 = k2a2,
we obtain that d1 > a1 and d2 > a2, that is, k1 > 1 and k2 > 1.

2. Main results

In this section, we consider convex lattice pentagons under given parallelism
conditions di ‖ ai between certain diagonals and sides. From Theorem 3, it follows
that at most three such conditions can hold in a convex lattice pentagon. We now
examine convex lattice pentagons in which exactly three such parallelism conditions
hold.

Let a convex lattice pentagon satisfy three relations of the form di ‖ ai. Since
a translation by a lattice vector is an isometry that maps lattice points to lattice
points, we may assume (without loss of generality) that one vertex of the pentagon
lies at the origin. Let A2 = (0, 0). There are now essentially two distinct cases to
consider.

2.1 Convex lattice pentagons with given conditions d1 ‖ a1, d2 ‖ a2 and
d4 ‖ a4

Let p, q be natural numbers such that (p, q) = 1 and p > q ≥ 1.
Let M1 denote the set of all convex lattice pentagons of minimal area that

satisfy the conditions d1 ‖ a1, d2 ‖ a2 and d4 ‖ a4. Also, let P1(p, q) denote the
set of all convex lattice pentagons with parallelism coefficients k1 = k2 = p

q and
k4 = q

p−q and let M1(p, q) be the subset of such pentagons with minimal area.

Theorem 4. 1) Every element of M1 has area 5/2, parallelism coefficients
k1 = k2 = 2 and k4 = 1, and is lattice-equivalent to a convex lattice pentagon in
which di ‖ ai for i ∈ {1, 2, 4}, as shown in Figure 1.

2) For every pair of natural numbers p and q such that (p, q) = 1 and p > q ≥
1, there exists a convex lattice pentagon with parallelism coefficients k1 = k2 = p

q
and k4 = q

p−q , i.e., the set P1(p, q) is non-empty.
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3) Every element of M1(p, q) has area 1
2 (p2 + q2). Every element of P1(p, q)

can be obtained from some element of M1(p, q) by applying a homothety with integer
coefficients along the coordinate axes, followed by a translation by a lattice vector.

4) The minimal diameter among the elements of M1 is
√

5, and it is attained
by the pentagon shown in Figure 1.

Figure 1. A convex lattice pentagon in which di ‖ ai, i ∈ {1, 2, 4}

Proof. 1) Based on (1), there exist positive rational numbers k1, k2, and k4

such that the following holds (Figure 1):

a5 + a1 + a2 = k1a1,(5)

a1 + a2 + a3 = k2a2,(6)

a3 + a4 + a5 = k4a4.(7)

From (5) and (6), we obtain that

a5 = k1a1 − a1 − a2,a3 = k2a2 − a1 − a2.

Now, since a1 + a2 + a3 + a4 + a5 = 0, it follows that

a4 = −(a1 + a2 + a3)− a5 = −k2a2 − k1a1 + a1 + a2,

By substituting these values for a3,a4 and a5 into (7), we get

k2a2 − a1 − a2 + a1 + a2 − k2a2 − k1a1 + k1a1 − a1 − a2

= k4(a1 + a2 − k1a1 − k2a2).

By simplifying, we obtain in sequence that:

(k1k4 − k4 − 1)a1 + (k2k4 − k4 − 1)a2 = 0,

k1k4 − k4 − 1 = 0 and k2k4 − k4 − 1 = 0.

By subtracting the last two equations, we obtain k4(k1 − k2) = 0. Since k4 is a
positive number, it follows that k1 = k2. Therefore, the following equalities hold:

k1 = 1 +
1
k4

= k2.
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Let us denote k1 = k2 = k and k4 = 1
k−1 . According to Lemma 2, we have

k > 1. We now construct a convex pentagon A′1A
′
2A

′
3A

′
4A

′
5 with these parallelism

coefficients, where three of its vertices are A′1 = (0, 1), A′2 = (0, 0) and A′3 =
(1, 0). From the equalities

−−−→
A′1A

′
4 = k

−−−→
A′2A

′
3 and

−−−→
A′3A

′
5 = k

−−−→
A′2A

′
1, it follows that the

remaining two vertices are A′4 = (k, 1) and A′5 = (1, k). At this point, we have

a4 =
−−−→
A′4A

′
5 = (1− k)i + (k − 1)j = (k − 1)(−i + j) = (k − 1)

−−−→
A′3A

′
1 = (k − 1)d4,

i.e. d4 = 1
k−1a4 = k4a4. Thus, in the convex pentagon whose vertices are

(8) A′1 = (0, 1), A′2 = (0, 0), A′3 = (1, 0), A′4 = (k, 1), A′5 = (1, k) (k > 1),

the coefficients of parallelism are k1 = k2 = k and k4 = 1
k−1 .

The lattice point D = (1, 1), by Lemma 2, lies in the interior of the convex pen-
tagon A′1A

′
2A

′
3A

′
4A

′
5. For k = 2, we obtain a convex lattice pentagon A1A2A3A4A5

with vertices A1(0, 1), A2(0, 0), A3(1, 0), A4(2, 1) and A5(1, 2) in which the coeffi-
cients of parallelism are k1 = k2 = 2 and k4 = 1 (see Figure 1). The area of this
pentagon, according to Pick’s Theorem, is given by

S = i +
b

2
− 1 = 1 +

5
2
− 1 =

5
2
,

which is the minimal possible area of a convex lattice pentagon.
Every such convex lattice pentagon with area 5

2 is lattice-equivalent to the pen-
tagon A1A2A3A4A5 shown in Figure 1. Indeed, if B1B2B3B4B5 is a convex lattice
pentagon of area 5

2 , it follows from the above that its coefficients of parallelism are
k1 = k2 = 2 and k4 = 1. By Theorems 1 and 2, there exists a lattice equivalence
mapping the triangle A1A2A3 onto the triangle B1B2B3. The points B4 and B5

are uniquely determined by the conditions
−−−→
B1B4 = 2

−−−→
B2B3 and

−−−→
B3B5 = 2

−−−→
B2B1.

2) Since the coefficients of parallelism in a convex lattice pentagon are positive
rational numbers, we have

k =
p

q
, p, q ∈ Z, (p, q) = 1, p > q ≥ 1.

If we substitute this value of k into (8) and multiply all coordinates of the resulting
pentagon by q, we obtain a convex lattice pentagon with vertices

(9) A1(0, q), A2(0, 0), A3(q, 0), A4(p, q), A5(q, p),

and the coefficients of parallelism are k1 = k2 = p
q and k4 = q

p−q . Its area is equal
to the sum of areas of the triangles A2A3A4, A2A4A5 and A2A5A1, and is given by

S =
1
2
(q2 − 0 + p2 − q2 + q2 − 0) =

1
2
(p2 + q2).

Since p > q ≥ 1, it is clear that this area is minimal when p = 2 and q = 1, i.e., for
the convex lattice pentagon shown in Figure 1.
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3) Let a lattice unimodular transformation be defined by the matrix

A =
[

a b
c d

]
, a, b, c, d ∈ Z, |ad− bc| = 1.

This transformation maps the vertices of the convex lattice pentagon given in (9)
to the vertices

(10) B1(bq, dq), B2(0, 0), B3(aq, cq), B4(ap+ bq, cp+dq), B5(aq+ bp, cq+dp),

which form a convex lattice pentagon of the same area S = 1
2 (p2 + q2), and with

the same coefficients of parallelism k1 = k2 = p
q and k4 = q

p−q .

4) Let us show that the minimal diameter of the pentagon given in (10) is
equal to

√
5. We will prove that

max{B1B4, B3B5, B2B4} ≥
√

5.

Assume the contrary. Then B1B4
2 < 5 and B3B5

2 < 5, from which we successively
obtain:

(ap)2 + (cp)2 = p2(a2 + c2) < 5 and (bp)2 + (dp)2 = p2(b2 + d2) < 5.

Since p ≥ 2, it follows that

a2 + c2 ≤ 1 and b2 + d2 ≤ 1.

Since |ad− bc| = 1, it cannot be a2 + c2 = 0 or b2 + d2 = 0, and thus we must have:

(11) a2 + c2 = 1 and b2 + d2 = 1.

Now, using the identity

(12) (ab + cd)2 + (ad− bc)2 = (a2 + c2)(b2 + d2),

it follows that ab + cd = 0, and using (11) we obtain

B2B4
2 = (ap + bq)2 + (cp + dq)2 = p2(a2 + c2) + q2(b2 + d2) + 2pq(ab + cd)

= p2 + q2 ≥ 5,

i.e., B2B4 =
√

5. This is a contradiction.

2.2 Convex lattice pentagons with given conditions d1 ‖ a1, d2 ‖ a2 and
d3 ‖ a3

Let p, q be natural numbers such that (p, q) = 1 and p > q ≥ 1.
Let M2 denote the set of all convex lattice pentagons of minimal area that

satisfy the conditions d1 ‖ a1, d2 ‖ a2 and d3 ‖ a3. Also, let P2(p, q) denote the
set of all convex lattice pentagons with parallelism coefficients k1 = k3 = p

q and
k2 = p+q

p , and let M2(p, q) be the subset of such pentagons with minimal area.
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Theorem 5. 1) Every element of M2 has area 4, parallelism coefficients
k1 = k3 = 2 and k2 = 3

2 , and is lattice-equivalent to a convex lattice pentagon in
which di ‖ ai for i ∈ {1, 2, 3}, as shown in Figure 2.

2) For every pair of natural numbers p and q such that (p, q) = 1 and p > q ≥
1, there exists a convex lattice pentagon with parallelism coefficients k1 = k3 = p

q
and k2 = p+q

p , i.e., the set P2(p, q) is non-empty.

3) Every element of M2(p, q) has area 1
2p(p + 2q). Every element of P2(p, q)

can be obtained from some element of M2(p, q) by applying a homothety with integer
coefficients along the coordinate axes, followed by a translation by a lattice vector.

4) The minimal diameter among the elements of M2 is
√

10, and it is attained
by the pentagon shown in Figure 2.

5) Every convex lattice pentagon with at least three pairs of parallel sides and
diagonals belongs to exactly one of the sets P1(p, q) or P2(p, q).

Figure 2. A convex lattice pentagon in which di ‖ ai, i ∈ {1, 2, 3}

Proof. 1) Based on (1), there exist positive rational numbers k1, k2 and k3

such that (see Figure 2):

a5 + a1 + a2 = k1a1,(13)

a1 + a2 + a3 = k2a2,(14)

a2 + a3 + a4 = k3a3.(15)

Since a1 + a2 + a3 + a4 + a5 = 0, by adding equalities (13) and (15), we obtain

(16) k1a1 + k3a3 − a2 = 0.

From (14), it follows that a3 = k2a2 − a1 − a2, and by substituting into (16), we
obtain

k1a1 + k3(k2a2 − a1 − a2)− a2 = 0,

(k1 − k3)a1 + (k2k3 − k3 − 1)a2 = 0,

from which we obtain k1 − k3 = 0 and k2k3 − k3 − 1 = 0. It follows that k3 = k1

and k2k1 = k1 + 1, i.e.,

k2 = 1 +
1
k1

.
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Let k1 = k. Then k2 = 1+ 1
k and k3 = k. By Lemma 2, we have k > 1. Let us

construct a convex pentagon A′1A
′
2A

′
3A

′
4A

′
5, with these parallelism coefficients, and

with three of its vertices given by A′1(0, 1), A′2(0, 0), A′3(1, 0). From the equalities−−−→
A′1A

′
4 = (1+ 1

k )
−−−→
A′2A

′
3 and

−−−→
A′3A

′
5 = k

−−−→
A′2A

′
1 we obtain that the remaining two vertices

are A′4 = (1 + 1
k , 1), A′5 = (1, k). We have

a3 =
−−−→
A′3A

′
4 =

1
k
i + j =

1
k

(i + kj) =
1
k

−−−→
A′2A

′
5 =

1
k
d3,

that is, d3 = ka3 = k3a3. Therefore, in the convex pentagon with vertices

(17) A′1(0, 1), A′2(0, 0), A′3(1, 0), A′4 = (1 + 1
k , 1), A′5 = (1, k) (k > 1),

the parallelism coefficients are k1 = k3 = k and k2 = 1 + 1
k .

Figure 3. A convex lattice pentagon in which di ‖ ai, i ∈ {1, 2, 3}

For k = 2, we obtain a convex pentagon B1B2B3B4B5 with vertices B1(0, 1),
B2(0, 0), B3(1, 0), B4( 3

2 , 1), B5(1, 2) and parallelism coefficients k1 = k3 = 2 and
k2 = 3

2 (see Figure 3). By multiplying the first coordinates of this pentagon by 2,
we obtain a convex lattice pentagon B1B2A3A4A5 with the same parallelism coef-
ficients and vertices B1(0, 1), B2(0, 0), A3(2, 0), A4(3, 1) and A5(2, 2). The area of
this pentagon, according to Pick’s Theorem, is given by

S = i +
b

2
− 1 = 2 +

6
2
− 1 = 4,

which is the minimal possible area of a convex lattice pentagon in which d1 ‖ a1,
d2 ‖ a2 and d3 ‖ a3 (see Figure 2).

2) Since the coefficients of parallelism in a convex lattice pentagon are positive
rational numbers greater than 1, we have

k =
p

q
, p, q ∈ Z, (p, q) = 1, p > q ≥ 1.

If we substitute this value of k into (17) and multiply the first coordinates of the
resulting pentagon by p, and the second coordinates by q, we obtain a convex lattice
pentagon with vertices

(18) A1(0, q), A2(0, 0), A3(p, 0), A4(p + q, q), A5(p, p)



84 Convex lattice pentagon with three pairs of parallel sides and diagonals

and the coefficients of parallelism are k1 = k3 = p
q and k2 = p+q

p . Its area is equal
to the sum of areas of the triangles A2A3A4, A2A4A5 and A2A5A1, and is given by

S =
1
2
(pq − 0 + (p + q)p− pq + pq − 0) =

1
2
p(p + 2q).

It is clear that this area will be minimal when p = 2 and q = 1, i.e., S = 4 for a
convex lattice pentagon in which d1 ‖ a1, d2 ‖ a2 and d3 ‖ a3 (see Figure 2).

3) Let a lattice unimodular transformation be defined by the matrix

A =
[

a b
c d

]
, a, b, c, d ∈ Z, |ad− bc| = 1.

This transformation maps the vertices of the convex lattice pentagon given in (18)
to the vertices B1(bq, dq), B2(0, 0), B3(ap, cp), B4(ap + aq + bq, cp + cq + dq) and
B5(ap + bp, cp + dp), which form a convex lattice pentagon of the same area S =
1
2p(p+2q), and with the same coefficients of parallelism k1 = k3 = p

q and k2 = p+q
p .

4) Let us show that the minimal diameter of the pentagon B1B2B3B4B5 is
equal to

√
10. We will prove that

max{B1B4, B2B4, B1B3} ≥
√

10.

Assume the contrary. Then B1B4
2 < 10, from which we get (ap+aq)2+(cp+cq)2 ≤

9, or equivalently, (a2 + c2)(p + q)2 ≤ 9. Since a2 + c2 ≥ 1, p ≥ 2 and q ≥ 1, it
follows that a2 + c2 = 1, p = 2, q = 1. Thus, the vertices of the pentagon are

B1(b, d), B2(0, 0), B3(2a, 2c), B4(3a + b, 3c + d) and B5(2a + 2b, 2c + 2d).

Let us denote m = ab+cd. Now, from B2B4
2 < 10, we obtain (3a+b)2+(3c+d)2 ≤

9, or equivalently 9(a2 + c2) + b2 + d2 + 6m ≤ 9. Since a2 + c2 = 1, it follows that
b2 + d2 ≤ −6m, and therefore m < 0.

Furthermore, from B1B3
2 < 10, we obtain (2a − b)2 + (2c − d)2 ≤ 9, or

equivalently 4(a2 + c2) + b2 + d2 − 4m ≤ 9. Since a2 + c2 = 1, it follows that
b2 + d2 ≤ 5 + 4m, i.e.,

(19) 1 ≤ b2 + d2 ≤ 5 + 4m.

It follows that 1 ≤ 5 + 4m, i.e., −1 ≤ m. Hence, −1 ≤ m < 0, so m = −1. For
m = −1, from (19) we obtain b2 + d2 = 1. Equation (12) now becomes m2 +1 = 1,
which implies m = 0. A contradiction.
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