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Abstract. With respect to constructivist views on the nature of mathematical
knowledge and the genesis of heuristic processes in the mind of the learner, the abun-
dance of problems, richness of ideas and students’ possibilities and power to develop
intuition have to be redefined by utilizing versatile technological tools. This paper
highlights how link between creative production and conceptual understanding may be
promoted by use of a progressive pocket computer. It focuses on learning based up-
on the interplay of different representations of mathematical objects, the use of which
would improve problem solving abilities as well as the understanding of underlying
mathematical concepts. We describe this kind of learning and examine its empirical
values by using a modification of a classical extreme value problem.
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Introduction

Knowing which thinking tools (heuristics) have been especially productive for
the development of mathematics over a long range of time and in different cul-
tures is an important issue for mathematics education and its management. When
shifting the focus to mathematics teaching, we should know how mathematical
knowledge and mathematical thinking
might come into student’s heads, and
into their lives and actions. If we car-
ry out a study of the history of math-
ematics as a long-term study of cog-
nitive and motivational processes and
activities resulting in new mathemat-
ics, we may identify eight main motives
and activities yielding new mathemat-
ical results at different times and in
different cultures for more than 5000
years [15].

Fig. 1. Activities and thinking tools particularly
successful in producing new mathematics [15, p. 42]
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These activities presented in Figure 1 may be taken as an element of an educational
framework for contemporary teaching and learning of mathematics, which may not
be subjected too strongly to recent modern waves and rapid changes of fashions
known under labels “New Math”, “Back to Basics”, and “Applications”. With re-
spect to Figure 1, the “find”-corner represents heuristic activities (cf. [12]). Among
them is the “Changing representation” activity that this contribution focuses on.
As this activity not only empowers problem solving but also promotes concept for-
mation and understanding, we should have now a closer look on procedural and
conceptual learning and knowledge.

Interplay of conceptual and procedural knowledge

Procedural (mathematical) knowledge often calls for automated and uncon-
scious steps, whereas conceptual knowledge typically requires conscious thinking.
We adopt the following characterization of [4, p. 141]:
• Procedural knowledge (P ) denotes dynamic and successful utilization of par-

ticular rules, algorithms or procedures within relevant representation forms.
This usually requires not only the knowledge of the objects being utilized, but
also the knowledge of format and syntax for the representational system(s)
expressing them.

• Conceptual knowledge (C) denotes knowledge of and a skilful “drive” along
particular networks, the elements of which can be concepts, rules (algorithms,
procedures, etc.), and even problems (a solved problem may introduce a new
concept or rule) given in various representation forms.
The history of mathematics supports many educators’ view that P enables C

development. The logical background is genetic view (P is a necessary but not
sufficient condition for C) or simultaneous activation view (P is a necessary and
sufficient condition for C). An instructional interpretation is: Utilize P and re-
flect on the outcome. Haapasalo & Kadijevich [4, pp. 147–150] call this position
developmental approach as it reflects the phylogenesis of mathematical knowledge
as well as its ontogenesis. Even Figure 1 gives us reason to assume that the mak-
ing of mathematics has been primarily guided by pragmatic aspects. Procedures
were devised first; conceptual clarifications have been undertaken latter - or are
still waiting to be done [15]. Very often needs for concept-formation and their
clarification emerged within the process of problem solving1.

In the individual development of mathematical knowledge it seems that again
P develops faster than C. Students’s behaviour very often reveals the existence
of powerful implicit concepts and theorems that may be called ’concepts-in-action’
and ’theorems-in-action’. Such knowledge cannot be properly called conceptual,
even though ’objects-in-actions’ may eventually be conceptualized.

Most educators assume the dependence of P on C, however. Their assumption
may be briefly summarized as: it is C that enables P . An instructional implication

1See, for example, the emergence of various versions of the concept of ’polyhedron’ [9]
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is: Build meaning for P before mastering it. Haapasalo & Kadijevich [4, pp. 150–
154] call this position educational approach since it seems to fulfil educational needs,
typically requiring a large body of knowledge to be understood and transferred.
The educational approach may be supported by dynamic interaction view (C is a
necessary but not sufficient condition for P ), or the above-mentioned simultaneous
activation view. It is the presence of metacognition that is crucial to C development
and for this reason P acquisition is generally more accessible to human beings
than C.

A sophisticated interplay of these two approaches can be illustrated in a flour-
ishing way when the applied framework of knowing and learning is linked to the
dynamic interaction and simultaneous activation views (see [2]2). By acknowledg-
ing these views, this contribution presents main ideas of promoting link between
creative production and conceptual understanding by means of the change of mathe-
matical representation, this activity being utilized within a progressive pocket com-
puter. These ideas are emphasized for a modification of a classical extreme value
problem involving quadratic functions (parabolas). In problem solving, in general,
change of representation (e.g., from symbolic to graphic, and vice versa) may be
useful to improve the problem solving process as well as the understanding of the
concepts under consideration. In our example, constructing conceptual knowledge
around “parabola” profits from utilizing different representations whose utilization
are useful in solving corresponding problems. So we can say that ’simultaneous
activation’ and ’changing representation’ may be seen as two aspects of the same
educational enterprise.

Overview of ClassPad operations

For more than 25 years, mathematical objects and concepts can be represented
on personal computers by symbolic expressions and graphs. However, students need
a lot of conceptual and procedural knowledge for being able to do this. This as-
pect becomes very important when mathematical software becomes more and more
versatile. Our educational problem today is that before students apply highly so-
phisticated computer tools, their informal thinking should be fostered through stim-
ulating problems and knowledge/skills profitable learning environments respecting
demands of modern constructivist theories on learning. In such situations mod-
ern technological tools might reinforce and enlarge the scope of creative activities.
We illustrate such activities by utilizing ClassPad 300, a modern pocket computer
made by Casio (see http://www.classpad.org; [5]).

Most ClassPad applications support simultaneous display of two windows:
Main Application work area and Currently Application area (Geometry, Statistics
or Spreadseets, for example), allowing drag and drop activities (i.e. copy and paste
actions) and other operations between the two windows.

2A learning software can be freely downloaded from http://www.joensuu.fi/lenni/
programs.html.
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Empowering heuristic thinking

Let us consider the following worksheet for upper-secondary (e.g., ninth-grade)
students3 including an extreme value problem:

A farmer has 200 fence-elements, which he can carry and put together into
two connecting corrals for his sheep and goats. After the animals will have eaten
all grass, the corral will be rearranged.

The form of the corral should be a rectangle (see figure at the right). Each el-
ement of the fence has a breadth of one meter. There
are many possibilities for the farmer to construct a
corral: to use more “thin” or “thick” rectangles. In
which way he should arrange the fence-parts for the
corral to get maximal pasture for the sheep and the
goats?

1. Some hints for your work (cf. [12]):
• consider special cases at first,
• construct and fill out a table in a systematic way,
• put the values from the table into a diagram,
• set up and check conjectures about the best fitting shape of a rectangle,
• use expressions with variables.

2. Think now, that you have no longer fence-elements of one meter but a “contin-
uous” fence material. Can you find now a solution with even larger pasture for the
animals?

When working in this problem field there might be stimulated a broad variety
of thinking processes as given below.

At the beginning, students can approach the problem by some simple mod-
el, e.g., matchboxes as fence-elements. They can start with a small number of
matchboxes, divisible by four, and look for the best rectangle without separation.
By doing this, students can generate conjectures (as square as best from) as well
as reasonable trial and error methods. Then, they can go on to the “separated”
rectangle and work in small groups with a worksheet. Figure 2 shows different

3Of course it might be used as an example in student teacher education, as well. Cf. the
paper of Rehlich [13].
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Fig. 2. Overview on heuristics utilizing ClassPad

possibilities of students’ activities and some of their potential sequences. The small
icons refer to respective adequate menu of a ClassPad. The dashed or thin lines
represent small, thick lines high transition-probability.

When approaching the problem in many different ways students discover math-
ematical patterns to understand their relations. After sufficient exploration, the
pursued approaches and obtained results are collected to trigger further iterations
and representations. We present shortly some heuristics, and show how the Class-
Pad properties allow versatile interplay between arithmetic, algebra and geometry
(the letters from a to i refer to Figure 2).

(a) Trial and error
The first approach might be to make a special hypothesis (e.g., the shape of

the fence might be a square) and to test it (cf. footnote 4).

(b) Systematic tabulation
By making a table students can get an interesting insight: If you take some

values for x, you get some values for the breadth 2z and for the area of the corral.
The sequences of differences reveal interesting arithmetical patterns, so that you
can calculate all consecutive values very easy in both directions (see Table 1).

Table 1. Utilizing systematic tabulation by paper and pencil method
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However, ClassPad offers a much more easier method: just use spreadsheets.
Figure 3a shows a trial method by x in column A. Columns B and C represent z
and the area, respectively4. Figures 3b and 3c illustrate how easily student can
move to graphic representation without understanding the links to algebra.

Fig. 3. Utilizing spreadsheets with graphic representation options

(c) Numerical solution
Through getting an insight of arithmetic structures, the table may lead us to

the solution x = 34.

Fig. 4. Utilizing explicit recursive method with ClassPad

(d) Using algebra
By using explicit expressions for the depth x (= an), the breadth (= bn) and the

area cn, students can immediately get a domain where the maximum value might

4There are many opportunities for students to notice that the number of fence elements x
must be even. Furthermore, they can optimize the whole area ore one half of it (as done above).
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be found (see Figure 4). Of course, they have to think what kind of input they
have to type for the explicit expressions of the corresponding magnitudes. However,
after some “informal” experiences as described above, it should not be too difficult
to experience the transformation from symbolic into “numerical” representation
(sequence of numbers in a table).

(e) Making diagrams by using simultaneous activation

The students can take the values from table 1 (without computer) to draw a
graph by using conventional plotting method.
When using ClassPad , it is much easier to
move from the expressions of the magnitudes
to graph plotting. The above-mentioned in-
vestigations can be done with much more
flexibility by utilizing a simultaneous activa-
tion of symbolic, table-bounded and graphic
representations. Students can utilize the ver-
satility in choosing different kinds of Class-
Pad operations. By looking at Figures 3 and
5 some special values might help to unrav-
el the shape of a parabola. Students might
become aware of the functional aspect and
they might use their prerequisite knowledge.
Furthermore, the graph might trigger some
other conjectures.

Fig. 5. Moving from algebra to
graphic representation

Toward more sophisticated mathematical models

If the students become aware that the problem can be modelled by a quadratic
function, they may apply additional prerequisite knowledge with paper and pencil
method or by using computer. They can calculate the area A(x) = x(200 − 3x)/2
and recognize this as an equation of a parabola. Because of the symmetry property
of the parabola, they can conclude that the vertex is located in the middle of the
x-axis intersections 0 and 200/3, so that the x-coordinate of the vertex is 100/3.
Then they might take the closest integer x = 34 and check it. Of course, they
can also make an algebraic transformation of this equation, which can easily yield
the coordinates of the top of the parabola. In this way the students get a solution
including a formal proof (cf. in Figure 2; the letters g–i below refer to the same
figure).

The insights and methods gained by the above mentioned activities might
stimulate the creation of similar problems (g). When working on these problems
students might discover that—independent from local circumstances—all solutions
of analogical problems can be characterized by the condition “use the same sum of
border length vertically as found horizontally” (h). Figure 6 shows a representative
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encompassing proof of this necessary condition (i). This leads easily to univer-
sal valid method to improve constellations without this characteristic by the dual
problem. We have not found in the literature this kind of generalization method
for our starting problem, even though solution methods of familiar problems have
been applied throughout the history of mathematics.

Fig. 6. Moving to generalization with encompassing proof

Closing remarks

Mathematics teaching in school is mainly concentrated on the drilling of proce-
dural routines, whereas mathematics at university level is mainly based on concep-
tual approach with quite poor procedural implications. Both of these polarizations
utilize scientific language and handling of old, clearly formulated and unambiguous
questions. It is our position that one of the biggest challenges for mathematics
education is to relate conceptual and procedural knowledge. To achieve this end,
an analysis of the history of human thinking processes during more than 5000 years
might be useful. Our example show that all eight components highlighted in Fig-
ure 1 can become a vital part of mathematical learning processes. They should be
taken seriously (in a balanced way, of course) no matter which professionals our
students are going to be: mathematicians, engineers, teachers or others. Concern-
ing teacher education, we probably would not get any shifting from the traditional
teaching culture to a progressive one utilizing dynamic problem-solving environ-
ments, if same kind of processes, including new technological solutions would not
be a vital part of teachers’ own studies (cf. [10, p. 43]).

Kadijevich [8] points out four areas, which have been neglected in research on
mathematics education: (1) promoting the human face of mathematics; (2) relat-
ing procedural and conceptual mathematical knowledge; (3) utilizing mathemati-
cal modelling in a humanistic, technologically-supported way; and (4) promoting
technology-based learning through applications and modelling, multimedia design,
and on-line collaboration. His approach offers special challenges to utilize modern
technology in all its forms. However, its sustainability should be also evaluated
as done by Haapasalo and Siekkinen [6]. They underline that dynamic problem-
based learning modules offer new features and challenges not only for teaching and
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learning of mathematics but also metacognitive skills. But, as we have seen from
the studies of Pesonen et al. [10], new technology can cause cognitive problems for
students, and the use of interactive modules would not bring special advantages
in teaching without an appropriate pedagogical framework and reflective tutoring.
Other problems concerning interactive graphic representations, for example, are
reported by Sierpinska et al. [14]. They found that students showed quite surpris-
ing ways in interpreting dynamic figures, which seemed to differ from the classical
paper-and-pencil representations. Furthermore, moving from the old studying cul-
ture towards a modern technology-based one can cause not only cognitive but also
emotional and social problems. Referring to the findings of Jarvela & Haapasalo
[7], it is appropriate to assume that interactive learning environments should be
tailored to fit students learning profiles. Whilst conceptual learners might prof-
it from exact definitions, procedural learners would profit from their more or less
procedural thinking. The most problematic group could be the group of procedure-
bounded learners, who probably would need special arrangements to get free from
their spontaneous naive procedural thinking. Thus, the question about ’minimalist
instructions’ to prevent the conflict between conceptual and procedural knowledge
concerning as well mathematics as the use of technology (cf. [3]) becomes crucial,
especially in the case of ClassPad type versatile tools, whose menus contain a huge
amount of conceptual knowledge.

Perhaps the most promising aspect of technology-based learning is to utilize
the principle of simultaneous activation of conceptual and procedural knowledge
(cf. [2], and [5]). This allows the teacher to be freed from the worry about the
order in which student’s mental models develop when interpreting, transforming
and modelling mathematical objects. Our examples hopefully show that more or
less systematic pedagogical models connected to an appropriate use of technology
can help the teacher to achieve this goal by allowing free architecture of learning.
The following quotation of the famous physicist E. Mach “You cannot understand
a theory unless you know how it was discovered” (see [1]) might help to highlight
the importance of linking the process of discovery (cf. Figure 1), understanding and
conceptualization incorporated in theory building. ClassPad type technology can
be used for increasing new kind of complexity for the mathematical content—being
an essential element when building a bridge between school and university and when
scaffolding mathematics making both inside as outside educational institutions.
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