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Abstract. In contrast to an existing tendency, the teaching procedures related
to the block of numbers 1{20 are considered with nicety of detail. Interdependence
of addition and subtraction is treated with a di�erentiation of syntactic matters from
those semantic. A comparison of matching and counting is also included in order to
show why matching alone would not lead to the building of the system of natural
numbers.
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8.2. Block 1{20. The range of numbers 0, 1, . . . , 10 plays the fundamental
role of generators for the whole systemN. Namely, each natural number is uniquely
represented as a polynomial of the form

an10
n + � � �+ a110 + a0;

and, when this polynomial is shortened to be a positional decimal notation, it is
written as an . . .a1a0. The involved coe�cients a0, a1, . . . , an belong to the range
0, 1, . . . , 9. When addition or subtraction is performed, it goes according to the
rules of operating with polynomials followed by possible carryings or borrowings
which keep the set of coe�cients within the range 0, 1, . . . , 9. And when these
performances are carried out on the decimal notations, the whole calculation is
reduced to a series of sums and di�erences which are listed in addition and sub-
traction tables. Modern practice aims at a spontaneous memorizing of these tables
accompanied with a complete understanding of how the included sums and dif-
ferences are gradually obtained from those which are smaller or easier. Since the
realization of this aim goes through the range of numbers 0, 1, . . . , 20, already by
it, these numbers form an important didactical whole, called the block 1{20.

8.2.1. Extension of the block 1{10. Copying from adults and other
children, many preschoolers learn to recite in order the names of numbers up to
ten or twenty. Also, they can attach these words to the groups of objects in their
everyday surroundings. In the speci�c atmosphere of a class, children spontaneously
and by themselves, develop this ability still further. But here we consider the role
of counting as an important didactical step in the course of a systematic teaching
process.
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After completing the lessons concerned with the range of numbers 0, 1, . . . , 10,
the teacher has to activate his/her class so to be sure that each of the pupils can
count up to twenty easily. Thus, the most important matching set is extended to
meet the needs of this block in extension.

In section 6 of this paper we considered the examples of two sets, when the
children are supposed to �nd, by counting, the number of elements of each of
them. Asking the question \how many altogether", we stimulate them to unite
the sets (to consider them as a whole) and to �nd, again by counting, the number
of elements of the union. On one hand, we direct them to unite naturally (and
without any symbolic formalization of prearithmetic operations) while at the same
time they become gradually familiar with the examples of addition scheme. The
same is again on the scene here, but now with the examples of sets of cardinality not
exceeding 10 and with their union, whose cardinality exceeds 10. Let us consider
an example.

A tray is seen with 8 cakes on it and another one with 7 cakes on it. How
many on each? The answers are 8 and 7. How many cakes there are altogeth-
er? Children will count (or count on from 8) and they will answer in words:
f i f t e e n c a k e s.

According to the already established meanings related to the block 1{10, chil-
dren know the numbers 8 and 7, the sum 8 + 7 and now they name the resulting
number using the word \�fteen". A series of similar examples completes the didac-
tical step we mentioned here.

The second step in this extension starts with the sums

10 + 1; 10 + 2; . . . ; 10 + 10

and with their abbreviations

11; 12; . . . ; 10

which are read
eleven, twelve, . . . , twenty

and when, the two corresponding notations are connected with the equality sign.

In the real teaching situations, number images should be used as, for example,
the following one

10+ 4 = 14

Fig. 19

(the \blue" ten plus the \red" four equals the \two colour" fourteen). Such a usage
of digits in colours suggests the positional values implicitly.

Up to this point, each number from the range 0, 1, . . . , 20 has its own notation
and, in addition, a group of easy sums has been established as well.
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8.2.2. Cases of �nding sums and di�erences reducing them to smaller

and easier ones. Casting a glance at some contemporary text-books in arithmetic,
one can observe a complete negligence of the cases of summation and subtraction
which cross the 10-line, although it was a core thema of earlier authors of such text-
books. It is true that, thanks to the machines which do them to us, the lengthy
calculations with mechanical speed and accuracy are no longer regarded as an es-
sential part of arithmetic teaching. But this does not mean that the calculations
related to the initial number blocks should be left out. On the contrary, their sys-
tematic treatment which provides meaning, skilful performance and right amount
of drill is a permanent didactical task. Neglecting such a treatment, some authors
expect children to \�nd their own way to the results". Their favourite means of-
ten are word problems, believing that the embodiment of meaning into physical
situations helps the calculation. Reacting to it, we take the freedom to make a
�gurative de�nition: calculation is the way of �nding the more complex from the
more simple.

In the frame of this topic, the simpler sums are the smaller ones whose values
do not exceed 10, as well as the already mentioned easier ones: 10 + 1, 10 + 2,
. . . , 10 + 10. The simpler di�erences are those smaller, with the minuend not
exceeding 10, as well as the following easier ones: 11� 1, 12� 2, . . . , 20� 10. The
more complex sums and di�erences are those which cross the 10-line.

The methods of adding up over ten and subtracting (taking away) down below
ten are the climax of the �rst grade arithmetic. Their application runs through
an active and motivated operating with arithmetic expressions. It is also the place
where the rule of association of summands and the rule of subtraction of sums are
applied with a right motivation. Moreover, these methods are the ground upon
which the children build up the addition and subtraction tables, �nding the results
with a full understanding and memorizing them spontaneously.

Sized properly, the operating on arithmetic expressions links arithmetic to
algebra. At that stage formed operating skills are easily transferred to algebra and
the established meanings are a semantic ground without which algebra would be
a mere play with letters. Therefore, negligence of these methods and no e�ort to
set them work is an evident sign that some authors have overseen something very
essential.

Though we often do it, we will not enter here into the details of a real teach-
ing process, because such contents are well known and they are not subjected to
essential variations.

8.2.3. Some teacher's uncertainties. A well planed usage of arithmetic
expressions from the very beginnings of the teaching process is a remarkable in-
novation. But a number of teachers, particularly those from elder generations,
encounter some problems when treating such a matter. I can remember some of
them who were perplexed with the fact that, once we say that the sum of numbers
5 and 3 is 5 + 3 and, the other time that it is 8. Which way is correct, was their
question. Explaining, I �rst took a simpler example.
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When we see \8" written on the blackboard, once we say it is the �gure eight,
the other time it is the number eight. In the former case we recognize a sign|
something syntactic and in the latter case we also attach to the sign its meaning|
something semantic.

In the same way, when we see \5 + 3", we recognize something which has
been set down in writing and what is a collection of single signs, technically called
an arithmetic expression, more speci�cally, a sum. When signifying, the sum is a
syntactic concept. When we also attach to such a notation its meaning, then it
represents the number eight and, in this sense, the sum is a semantic concept.

When two di�erent arithmetic expressions stand for the same number|have
the same numerical value, they are called numerically equivalent and then, they
are connected by the equality sign. In respect to it, the equality is an equivalence
relation in the set of all arithmetic expressions and calculation can be seen as a
chain of simpler and simpler equivalent expressions linked by the equality sign,
which ends with the most standard one in the form of a decimal notation.

Finally, such and similar uncertainties of teachers make us believe that the
instructors who teach in and the authors who write books for elementary schools
should be acquainted with the rudiments of mathematical logic and a chapter from
the Kolmogorov's book [14]1 might be a good inspiration for it. Such contents
would, prior to all, help the elimination of an existing jargon in schools which is
due to a long generation of obtrusive preachers.

8.2.4. Linking addition and subtraction. We can read in many a book
on teaching matters that subtraction is the inverse operation to addition or, more
symmetrically said, that two operations are inverse to each other. To understand
what is meant by it, one thinks of the real world situations which call for addition
and subtraction. For example, giving is opposite to taking and vice versa. But
considering these two operations more abstractly, it is probably better to say that
they are related to each other. And this means exactly that the three equalities

m+ n = s; s�m = n; s� n = m

are at the same time true or false.

Now the question is how to transpose it didactically and, so embodied, to
communicate to children. First, of course, by the use of examples from the natural
environment (including their pictorial representations). Having such an example
of situation �xed, the requirements are varied so that the children are induced to
write the equalities m + n = s, (n + m = s), s � m = n, s � n = m, while the
situation keeps still. Then, as a second step, schemes of the form

1References numbered 1 to 13 are included in the �rst two parts of this article (this Teaching,
vol. II, 1, p. 58, and vol. II, 2, p. 103)
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s

m n

Fig. 20

should be used and the children engaged to formulate some word problems which
call for each of the above equalities to be written. And �nally, groups of more
formal exercises as, for example, the following ones

a) 3+ = 9 b) 8� 5 = c) 7� = 3

9� = 6 5+ = 8 +4 = 7

9� = 3 +5 = 8 4+ = 7

should be given. As far as a child, after having the �rst equality completed, �nds
the other two left to be easier, his/her acquisition of this relationship is evident. To
control the degree of acquirement of such knowledge, the teacher may prepare even
more formal exercises of, for example, the following type: When you check that
8 + 9 = 17, then, without checking, you can write: 8 = � , 9 = � , or
else: By calculating, you complete 17� 8 = , then without calculation, you can
write 8+ = and 9+ = ; and so on.

When adding we write, for example: 5 + 3 = 8 and when decomposing into
summands: 8 = 5 + 3. We see, thus, the symmetry property of equality expressed
in writing. But, without a speci�c motivation there is nothing which would move
us to reverse such an equality. Just the opposite, in practice a kind of asymmetry
is preferred: a more complex expression is usually seen on the left-hand side of an
equality or all terms containing an unknown quantity are taken to the left-hand
side, etc. And when no attention is paid to this property, some secondary school
students may be found who continue to solve the equations as this one: �5 = x,
�x = 5= � (�1), x = �5.

On the other hand, equality in the set of numbers is an identity relation and,
since each thing is always equal to itself, the symmetry property is a matter of
course. More generally, it is the same with any equivalence relation if de�ned
by equality of certain properties (say, in the set of expressions to be equivalent
means to have the same numerical value). Therefore, the problem of treatment of
symmetry property should be seen as a matter of the use of syntactic apparatus.

Using space holders and by other means, children should be induced to write all
eight equalities which are associated with the situations represented by the scheme
in Fig. 20. Attaching to a �xed situation the equalities

m+ n = s; n+m = s; s�m = n; s� n = m

s = m+ n; s = n+m; n = s�m; m = s� n;
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in that way they procedurally express the link between two operations as well as
the symmetry property.

If, happily, learning of lengthy calculations is no longer accentuated in the
contemporary school, the cultivation of pupils to use some pieces of syntactic ap-
paratus correctly and with accuracy is a new didactical task which is motivated by
the prolongation of educational process.

8.2.5. Comparison of counting and matching. As already said (para-
graph 6.2), the ideas of natural numbers result from a process which consists of
a perception of concrete sets and an abstraction described as the ignoring of the
nature of their elements and the way they are arranged. In the case of small sets,
the corresponding mental images exist formed in our mind and, for instance, we
are able to immediately di�erentiate a set having three elements from another one
having four elements. But, as known, this ability of ours is very limited. Perceiving
two larger sets of objects, the corresponding inputs cannot be interpreted so sharply
as to distinguish them according to the number of elements. Excepting the case
of a few initial numbers, the mental apparatus contains nothing but a rather fuzzy
inner representation to which the world \many" is attached to express cardinality
of the sets. In this respect we are not far from the prehistoric man who counted
up to �ve only. (To those who doubt it, we suggest to try to imagine clearly a
monotonous linear ordering of ten dots.)

If a set does not match with a mental image in our mind, it may do it with
another set. Given two sets A and B, if for each element a in A there corresponds
an element b in B so that for di�erent a's, di�erent b's are corresponded and vice
versa, then we say that these two sets match. For such two sets we also say that
they are mapped one-to-one on each other. Pointing out the common property of
two sets which match, we say that they are equipotent or, less technically, that
they have the same number of elements. The last phrase could easily provoke the
question \which number". And, in this theoretical setting, the answer would be
\the number which each one of the sets itself represents". Thus, the concept of a
number (technically, of a cardinal number) is de�ned to be the common property
of all sets belonging to the same class of mutually equipotent sets (technically, such
a class, itself).

Now our curiosity has been arisen and we are eagerly expecting to know what
according to this de�nition, would be our familiar numbers 1, 2, 3, . . . And they
are de�ned as follows.

The number 1 (2, 3, . . . ) is the common property of all sets equipotent to the
set

fxg; (fx; fxgg; fx; fxg; ffxggg; . . . ):

De�ning numbers of the sequence 1, 2, 3, . . . , a sequence of sets formed as combi-
nations of an element \x" and the curly braces is used. Instead of this sequence,
many others may equally be used. For example, replacing, member by member,
each set with an equipotent one, the following sequence of pictorially represented
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sets is obtained

� � � � � � . . .

Fig. 21

As is easily seen, to de�ne a natural number, say 3, a three element set is used
what, in that way, brings out the intuitive meaning of this number expressed by
a signi�cant sign. To de�ne all natural numbers, an unbounded sequence of such
signs would be used. Since a complete realization of such a sequence is impossible,
the symbol \ . . . ", read \and so on", carries the command \continue doing as it
has been done". For example, to continue the sequence of pictorial signs in Fig. 21,
the next step is to draw four dots, the following �ve and so on, at each new step,
a dot more is added. A third sequence which can be equally well used consists of
sets of decimal notations

f1g; f1; 2g; f1; 2; 3g; . . .

or of their verbal substitutes

foneg, fone, twog, fone, two, threeg, . . .

All these settings of symbols, one after another, or their possible consecutive
reciting could remind us of counting, what it essentially is, but in a di�erent form.
Therefore, we see counting as an action inevitable in the process through which the
system N of natural numbers is constructed. This construction goes divided into
portions (number blocks) with counting also converted into addition and multipli-
cation. Thus, a reasonably large range of numbers is formed within which, due to
associations with nice groupings (in ones, tens, hundreds, etc.) each number also
has an intuitive meaning. Out of this range everything comes as a result of the
\and so on" e�ect. We can really see this e�ect at work in many situations when
something is demonstrated in a number of cases, and, as soon as a rule manifests,
\and so on" is added to mean that the same demonstration goes in all other cases
and, in fact, it is nothing more than a spontaneous form of the fundamental math-
ematical principle called total induction. As well known, its explicit formulation
reads:

Given an in�nite sequence of propositions p1, p2, . . . , pn, . . . , if

(I) p1 is true;

(II) pn implies pn+1 for each n,

then all these propositions are true.

In its spontaneous form, this principle has been known from the times of Euclid.
A �rst explicit formulation appeared in the book \Arithmetica" written by Italian
Renaissance mathematician F. Maurolycus. Acknowledged and e�ectively used as
a method of proof by Pascal, the explicit form of this principle is often associated
with his name.
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A deep treatment of the induction principle can be found in Poincar�e's
book [15]. Chapter XI of Freudenthal's book [3] is a brilliant essay on compar-
ison of counting and matching.

Attaching an addendum to this paragraph, we want to show in a logically
more sharp way that the number system N is characterized by counting (and from
it derived operations) together with the property which the principle of induction
expresses.

Addendum 6.

Let S in the triple (S; 1; s) be a nonempty set, 1 a selected element of S and
s : S ! S a one-to-one mapping. Let the following axiom holds.

(I) for each x 2 S, s(x) 6= 1.

The triple (S; 1; s) is an example of a mathematical structure and two such examples
(S; 1; s) and (S0; 10; s0) are isomorphic if there exists a mapping ' : S ! S0 which
is one-to-one and onto, which maps the selected elements one upon another, i.e.
'(1) = 10 and for each x 2 S, '(s(x)) = s0('(x)) holds.

Let us remark that the mapping s can be seen as a way of abstract counting
which begins with 1 and which produces the sequence of iterates

1; s(1); s(s(1)); . . .

The axiom (I) ensures that all its members are di�erent and so makes the set S
be in�nite. But, apart from the members of this sequence, the set S can contain
many other elements.

Letting S beN or the set of ordinals (1; �) which are less than a limit ordinal �,
(� > w) and de�ning s by s(x) = x+1, two nonisomorphic examples of this type of
structure are obtained. A drastically di�erent example from these both is obtained,
taking for S the disjoint sum of N and any nonempty set X and extending s to be
the identity mapping on X .

Such a weak structure becomes much more determined when the following
axiom

(II) for each A � S, if 1 2 A and

s[A] = f s(x) j x 2 A g � A;

then A = S,

is added.

The system of two axioms (I) and (II) is now categorical, what means that any
two examples (S; 1; s) and (S0; 10; s0) which satisfy them are necessarily isomorphic.
(It is easily seen that the set S has no other elements than 1, s(1), s(s(1)), . . . .
Then, an isomorphism mapping S to S0 is easily found.)

The example of the set N with s given by s(x) = x+1 satis�es the axioms (I)
and (II) and, hence, there exists no other example which is not isomorphic to it.
Thus, the axioms (I) and (II) fully characterize the system N of natural numbers.
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The axiom (II) is nothing more than a variation of the principle of total in-
duction and the forerunning consideration reveals its strength.

In a varied form, these axioms are due to G. Peano (1858{1932) and called the
axioms of arithmetic.

De�ning addition and multiplication inductively by

n+ 1 = s(n); n+ (m+ 1) = s(n+m);

n � 1 = n; n � (m+ 1) = n �m+ n;

all familiar properties of natural numbers can be established on this basis.

8.2.6. Role of nice groupings. Numbers as shapes. If it is hard to
imagine a monotonous series of ten dots, an image of two hands and the ten �ngers
on them, is easily evoked in the mind. What we really cause to appear are two
very familiar shapes, each of which bears an intuitive idea of number �ve. Thinking
of the number of �ngers so seen in the mind, it will be 5 + 5 rather than 10. A
regular arrangement of ten sticks, as the one in Fig. 19, is also easily imagined
and, again, as a pure shape. When number images in the form of appropriately
sized sheaves of sticks representing 10 and 100 have been used, then it is easier to
perceive or imagine 222 than 6 sticks in a monotonous order. Of course, imagining
and perceiving of numbers are interdependent and, if not related to nice shapes,
such our ability hardly surpasses the number �ve and we have already mentioned
that fact as a reason why the range of numbers 1{5 should be treated as an exclusive
didactical topic.

An object as a sheaf of hundred sticks does not reect clearly the number 100.
On the opposite, by the way of its usage, it becomes a signifying sign. A bundle of
hundred one dollar banknotes has the same purchasing power as a single hundred
dollar banknote. Understanding the meaning of the number 100, we could say that
the latter signi�es what the former is. In the sequence

10; 102; 103; . . . ; 10n; . . .

the initial members are often used so that they reect various meanings in the
surrounding reality. For bigger n, 10n is a huge sheaf composed of 10 smaller, each
containing 10n�1 sticks. This is a typical inductive de�nition by which, in a less
formal way, these powers get the meaning. And if the numbers from a reasonably
large initial range do reect life, those out of it are understood only according to
the way we operate on their notations.

Two equipotent sets of objects represent the same number intuitively. One
of them may have its elements nicely grouped, the other just be a chaotic heap.
Ordered or disordered, it does not e�ect the numerical meaning they bear, but the
perceptional grasp of a nice pattern may be very important for deriving suitable
notations for numbers. For instance, perceiving the elements of a set in three groups
of at most nine subsets so that the subsets in the �rst group are 1-element, in the
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second 10-element, in the third 100-element, we have a pattern which is the basis
for a three digit notation.

The point of view of some specialists that matching of sets leads to a proper
understanding of natural numbers is more than doubtful. When, as a result, per-
formance of routine tasks is ignored, then it leads into a wrong path going aside
the course established by classical educational reformers.

Our aim in this paragraph was to show that matching without counting would
not produce the system N of natural numbers. On the other hand, depending
on grouping of elements of �nite sets, a corresponding system of notation is also
produced. Such groupings, though not essential for establishing the concept of
natural numbers|not being its invariant property, they are the basis upon which
N is built. In the paragraph 7.1 of this paper, we considered some historical systems
of notation which do and which do not produce the whole system N.

We include the following addendum for those readers who have a good profes-
sional acquaintance with mathematics.

Addendum 7.

As soon as an equivalence relation is given in a class of objects, a system of
morphological types results from such a classi�cation. A property is an invariant
of this classi�cation whenever it is shared with all mutually equivalent objects.
Similarly, a term is invariant if it has the same meaning for any two equivalent
objects. All invariant terms of such a morphology constitute its invariant language.
Let us consider some examples.

Homeomorphic topological spaces are topologically equivalent and each class
of mutually equivalent spaces represents a topological type. But to show that such
morphological types exist, we often use a language which is not invariant. For
example, n-sphere is de�ned by means of coordinates as the set of points in Rn+1

such that
x20 + x21 + � � �+ x2

n
= r2;

and then used to �x the topological type of n-sphere as a class of objects equivalent
to it.

To develop interesting systems of invariants, spaces having polyhedral struc-
ture or the structure of CW complexes are used. In the process of describing these
structures a descriptive (noninvariant) language is employed and many properties
of such objects are not invariant in the topological sense. We may call such struc-
tures, which are important to develop a theory, the associated descriptive struc-
tures. As another example, we can mention the way how groups are determined
by presentations|systems of generators and de�ning relations, what is again an
example of descriptive language. And instead of manipulating with isomorphism
types of groups, we do it with their presentations.

There exist many other situations in mathematics which illustrate the impor-
tance of descriptive language and associated descriptive structures and without
them, a theory would be deprived of meaning. Returning to the system N, the nice
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groupings of elements of sets are seen as important associated descriptive structures
and derived notations and the rules of manipulation with them as an important
descriptive language. Without them, arithmetic would be reduced to an entrance

porch.

At the end, we express our opinion (also formed in touch with school reality)
that children learn arithmetic with lightness and ease from the text-books worked
out with great care and nicety of detail and not from those ones whose exclusive
feature is a too much elaborate adorning.
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