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Abstract. In this paper, we consider the following question: if all homology groups of
a space X are finitely generated, and if R is a commutative ring with identity, is it true
that the homology and cohomology R-modules Hi(X; R) and Hi(X; R) are also finitely
generated? We show that the answer to this question is negative in general, but affirmative
if R is an integral domain. In the case when R is a principal ideal domain, and Hi(X; R) is
finitely generated for all i, we also discuss computing Hi(X; M) and Hi(X; M) for a finitely
generated R-module M .
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1. Introduction

Basic homology techniques have been a standard part of the mathematics cur-
riculum at universities for several decades. They are usually presented within intro-
ductory courses of topology through the study of homology and cohomology groups
of topological spaces. This paper deals with homology and cohomology groups with
coefficients in a ring, and more generally, in a module over a ring. In particular, we
aim to provide the reader with a deeper insight into homology techniques through
examining finite generativity of resulting homology and cohomology modules.

A topological space X is said to be of finite type if all its homology groups Hi(X),
i > 0, are finitely generated. For such an X, the universal coefficient theorems
(for homology and cohomology) provide an algorithm for computing Hi(X;G) and
Hi(X; G), at least when the abelian group G is itself finitely generated. If X is
of finite type and G finitely generated, it is a consequence of this algorithm that
Hi(X; G) and Hi(X; G) are finitely generated abelian groups.

If we take the coefficients in a commutative ring (with identity) R, then the
groups Hi(X; R) and Hi(X;R) have the additional structure of R-modules, which
in return gives us more information about the topological space X itself. A nat-
ural question that arises in teaching algebraic topology and homological algebra
is whether these R-modules are necessarily finitely generated. In considering this
question, we illustrate an interesting interplay between the notions of abelian group
and R-module which is instructive for curious students who would like to know more
about the theory of homology and cohomology.

It is straightforward from the algorithm (i.e. from the universal coefficient the-
orems) that the answer to the proposed question is positive if the ring R has no



Finite generativity of (co)homology modules 113

zero divisors. We prove this fact in Theorem 2.1. However, if R does have zero
divisors, then the answer is negative. We provide an example of such a ring R by
a slight modification of one of the first examples of non-Noetherian rings—namely,
the polynomial ring Z[x1, x2, . . . ] over infinitely many variables—while for the space
X we take an appropriate Moore space. Moreover, in Theorem 2.3 we present a
whole array of examples.

If R is a PID (principal ideal domain), then the universal coefficient theorems
hold in the category of R-modules as well (see [3, p. 222, 243]). So, if we start with
homology modules Hi(X; R) and if we take an R-module M , then these theorems
express Hi(X; M) and Hi(X; M) in terms of Hi(X; R) and M , via tensor and
torsion products, and functors HomR and ExtR. Now, if M and all Hi(X; R),
i > 0, are finitely generated, then they are finite direct sums of cyclic modules, and
in order to obtain an algorithm for computing Hi(X; M) and Hi(X;M) (analogous
to the one for abelian groups), we need to know how to calculate tensor and torsion
products, as well as HomR and ExtR, of two cyclic R-modules. A key ingredient
in that regard is Proposition 3.1. This proposition generalizes the well-known fact
for cyclic groups that, if m and n are positive integers and Z/mZ n→ nZ/mZ the
multiplication with n, then both kernel and cokernel of this map are isomorphic to
the cyclic group Z/dZ, where d is the greatest common divisor of m and n.

2. Are Hi(X; R) and Hi(X; R) finitely generated R-modules?

The universal coefficient theorem for homology [2, Theorem 3A.3] states that if
X is a space and G an abelian group, then for every i there is a split short exact
sequence of abelian groups

0 → Hi(X)⊗G → Hi(X; G) → Tor(Hi−1(X), G) → 0.

Therefore, for all i we have an isomorphism:

(2.1) Hi(X; G) ∼= (Hi(X)⊗G)⊕ Tor(Hi−1(X), G).

Similarly, the cohomology variant of the theorem [2, Theorem 3.2] establishes the
split short exact sequence

0 → Ext(Hi−1(X), G) → Hi(X; G) → Hom(Hi(X), G) → 0,

and consequently, an isomorphism

(2.2) Hi(X;G) ∼= Ext(Hi−1(X), G)⊕Hom(Hi(X), G).

Also, it is well known that all the operations on abelian groups appearing in (2.1)
and (2.2) behave nicely with respect to finite direct sums (see [2, p. 192, 195, 215,
265]). So, if the space X is of finite type, then every group Hi(X) is isomorphic
to a finite direct sum of cyclic groups, and in order to determine Hi(X; G) and
Hi(X; G), it suffices to determine C ⊗ G, Tor(C, G), Ext(C,G) and Hom(C, G),
where C is a cyclic group. The following isomorphisms can be found in [2, p. 195,
215, 265]:

(2.3)
Z⊗G ∼= G, Ext(Z, G) = 0,

Z/nZ⊗G ∼= Ext(Z/nZ, G) ∼= coker
(
G

n→ G
)
;
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(2.4)
Hom(Z, G) ∼= G, Tor(Z, G) = 0,

Hom(Z/nZ, G) ∼= Tor(Z/nZ, G) ∼= ker
(
G

n→ G
)
;

where the map G
n→ G is the multiplication with the positive integer n.

Now, let R be a commutative ring with identity. Since R is a module over itself,
for every abelian group A, each of the abelian groups A⊗R, Tor(A, R), Hom(A,R)
and Ext(A,R) has a natural structure of an R-module. Additionally, for any space
X the abelian groups Hi(X; R) and Hi(X;R), i > 0, are also R-modules. Moreover,
if G is replaced by R in the relations mentioned above, all the relevant isomorphisms
are R-module isomorphisms.

We want to answer the question whether the R-modules Hi(X; R) and Hi(X; R)
must be finitely generated if X is of finite type. It follows from the previous
discussion that this amounts to checking whether ker

(
R

n→ R
)

and coker
(
R

n→ R
)

are finitely generated R-modules.
Since a quotient of a finitely generated module is finitely generated (the cosets

of generators for the module generate the quotient), coker
(
R

n→ R
)

= R/nR is a
finitely generated R-module for each n (moreover, the R-module R/nR is cyclic—it
is generated by a single element, namely 1+nR). On the other hand, in general, the
situation for ker

(
R

n→ R
)

is more complicated. However, if R is an integral domain,
i.e., if it has no zero divisors, the R-module ker

(
R

n→ R
)

is finitely generated, which
is the crux of the proof of the following theorem.

Theorem 2.1. If R is an integral domain and X a space of finite type, then
Hi(X; R) and Hi(X; R) are finitely generated R-modules.

Proof. As we have stated above, we have the isomorphism of R-modules

Hi(X; R) ∼= (Hi(X)⊗R)⊕ Tor(Hi−1(X), R),

and since Hi(X) and Hi−1(X) are finitely generated, according to previous discus-
sion Hi(X; R) is a finite direct sum of R-modules of form

Z⊗R ∼= R, Z/nZ⊗R ∼= coker
(
R

n→ R
)
, Tor(Z, R) = 0 and

Tor(Z/nZ, R) ∼= ker
(
R

n→ R
)

=
{

R, n = 0 in R

0, n 6= 0 in R

and all of these are cyclic R-modules. Note that in obtaining the last equality, we
have used the assumption that R has no zero divisors.

Similarly, for cohomology we have the isomorphism of R-modules

Hi(X; R) ∼= Hom(Hi(X), R)⊕ Ext(Hi−1(X), R),

so Hi(X; R) is a finite direct sum of cyclic R-modules as well.

However, the R-module ker
(
R

n→ R
)

need not be finitely generated in general.
Let us construct an example to demonstrate this. Since ker

(
R

n→ R
)

is an ideal in
R, that is, a submodule of the R-module R, first we need a non-Noetherian ring R.
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One of the first such rings that comes to mind is the polynomial ring Z[x1, x2, . . . ]—
the ideal (x1, x2, . . . ) generated by x1, x2, . . . (which consists of the polynomials
with vanishing constant term) is not finitely generated, but Z[x1, x2, . . . ] is an
integral domain, hence by Theorem 2.1 it cannot assume the role of the ring R in
the example we are looking for.

However, an appropriate quotient of Z[x1, x2, . . . ] fits our needs.

Lemma 2.2. Let n > 2 be an integer. If R is the quotient of the polynomial ring
Z[x1, x2, . . . ] by the ideal generated by nx1, nx2, . . . , i.e.

R = Z[x1, x2, . . . ]/(nx1, nx2, . . . ),
then the ideal ker

(
R

n→ R
)

in R is not finitely generated.

Proof. We can think of each element of R as a polynomial whose constant term is
an integer, while all other coefficients are from the ring Z/nZ of integers modulo n.
Then the ideal ker

(
R

n→ R
)

consists of the polynomials with zero constant term,
and so, it is the ideal generated by (the cosets of) the variables x1, x2, . . .

Let us denote this ideal by I, and show that it is not finitely generated. Sup-
pose to the contrary that some polynomials f1, f2, . . . , fk ∈ I generate I. Every
polynomial in infinitely many variables is a finite sum of monomials, and therefore
includes only finitely many of the variables. Let xm be a variable which does not
appear in neither of the polynomials f1, f2, . . . , fk. Since xm ∈ I, we have

(2.5) xm =
k∑

j=1

pjfj ,

for some p1, p2, . . . , pk ∈ R. So there exists j ∈ {1, 2, . . . , k}, a monomial in pj and
a monomial in fj whose product is a constant times xm. However, every monomial
in fj has positive degree (since fj ∈ I) and does not contain the variable xm.
Therefore, the equation (2.5) is impossible, and the lemma is proved.

Recall that for a positive integer m and an abelian group G there is a space X
with the property

Hi(X) ∼=





Z, i = 0
G, i = m

0, otherwise
Such a space is called a Moore space of type (G,m), and is denoted by M(G, m)
(see [2, p. 143]. Obviously, M(G,m) is of finite type if and only if G is finitely
generated.

Theorem 2.3. Let n > 2 be an integer and let R = Z[x1, x2, . . . ]/(nx1, nx2, . . . )
be the ring from Lemma 2.2. Then, for all positive integers m, the R-modules

Hm+1

(
M(Z/nZ,m); R

)
and Hm

(
M(Z/nZ,m); R

)

are not finitely generated.

Proof. By the universal coefficient theorems (2.1) and (2.2), as well as the prop-
erties (2.3) and (2.4), both of these R-modules are isomorphic to ker

(
R

n→ R
)
. The

result follows from Lemma 2.2.
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3. The PID case

All the isomorphisms featuring in (2.1)–(2.4) are isomorphisms in the category
of abelian groups, which is the same as the category of modules over the ring of
integers Z. As we have already stated, every finitely generated abelian group is
isomorphic to a finite direct sum of cyclic ones. On the other hand, the groups
ker

(
G

n→ G
)

and coker
(
G

n→ G
)

(from (2.3) and (2.4) are easily calculated if G is
cyclic. Namely, ker

(
Z n→ Z

)
= 0, coker

(
Z n→ Z

)
= Z/nZ, while

(3.1) ker
(
Z/mZ n→ Z/mZ

) ∼= coker
(
Z/mZ n→ Z/mZ

) ∼= Z/dZ,

where d is the greatest common divisor of positive integers m and n. Therefore, we
have an algorithm for computing the groups Hi(X; G) and Hi(X; G) in the case
when X is of finite type and G finitely generated.

In this section we show that the same algorithm works more generally—in the
category of modules over a principal ideal domain (PID).

Let R be a PID. The universal coefficient theorems (2.1) and (2.2) hold in this
generalized setting as well. Namely, for a space X and an R-module M , if we
substitute Hi(X; R) for Hi(X) and M for G in (2.1) and (2.2), we obtain R-module
isomorphisms (see [3, p. 222, 243]):

Hi(X;M) ∼= (Hi(X; R)⊗R M)⊕ TorR(Hi−1(X; R),M),(3.2)

Hi(X; M) ∼= ExtR(Hi−1(X; R),M)⊕HomR(Hi(X;R),M).(3.3)
Now let X be a space such that homology modules Hi(X; R) are finitely generated

(by Theorem 2.1, this is the case if X is of finite type). If M is finitely generated
as well, we want to present an algorithm for computing Hi(X; M) and Hi(X; M)
that generalizes the one above for abelian groups (Z-modules). Recall that every
finitely generated module over a PID is isomorphic to a (finite) direct sum of cyclic
modules (see [1, Theorem 5, p. 462]). On the other hand, the operations ⊗R, TorR,
HomR and ExtR commute with finite direct sums (see [3]), and so as in the case
of abelian groups, it suffices to determine C1 ⊗R C2, TorR(C1, C2), HomR(C1, C2)
and ExtR(C1, C2) for two cyclic modules C1 and C2.

If C is a cyclic R-module, then there exists an epimorphism ϕ : R → C from the
free cyclic R-module R onto C. By the first isomorphism theorem, C ∼= R/ kerϕ,
and since R is a PID, the ideal kerϕ is principal, that is, kerϕ = aR for some
a ∈ R. We conclude that every cyclic R-module is isomorphic to R/aR for some
a ∈ R (the case a = 0 corresponds to a free cyclic module).

The isomorphisms analogous to those from (2.3) and (2.4) hold in the category
of R-modules (see [3, p. 221, 241, 242]):

R⊗R M ∼= M, ExtR(R, M) = 0,

R/aR⊗R M ∼= ExtR(R/aR, M) ∼= coker
(
M

a→ M
)
;

HomR(R,M) ∼= M, TorR(R,M) = 0,

HomR(R/aR, M) ∼= TorR(R/aR,M) ∼= ker
(
M

a→ M
)
,

where the map M
a→ M is the multiplication with the nonzero element a ∈ R.
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By the previous discussion, it is enough to calculate these modules in the case
when M is cyclic, i.e. isomorphic to either R or R/bR for some nonzero b ∈ R.
Therefore, we are left to determine kernels and cokernels of the maps R

a→ R and
R/bR

a→ R/bR. The kernel of the former map is trivial since R has no zero divisors,
and its cokernel is obviously the cyclic module R/aR. The following proposition
calculates the kernel and the cokernel of the latter map (generalizing (3.1)), and
thus completes the announced algorithm.

Proposition 3.1. If R is a PID, and a, b ∈ R \ {0}, then we have the following
isomorphisms of R-modules:

ker
(
R/bR

a→ R/bR
) ∼= coker

(
R/bR

a→ R/bR
) ∼= R/dR,

where d ∈ R is a greatest common divisor of a and b.

Proof. Let us firstly notice that

(3.4) a(R/bR) = (aR + bR) /bR = dR/bR.

Indeed, aR + bR = dR since R is a PID, and the first equality follows from the
following equivalences (where x ∈ R):

x + bR ∈ a (R/bR) ⇐⇒ (∃y ∈ R) x + bR = a(y + bR) = ay + bR

⇐⇒ (∃y ∈ R) x− ay ∈ bR

⇐⇒ x ∈ aR + bR.

Now it is straightforward from (3.4) that
(3.5)

coker
(
R/bR

a→ R/bR
)

= (R/bR) / a(R/bR) = (R/bR) / (dR/bR) ∼= R/dR,

by the third isomorphism theorem.

Now on to proving that the kernel of R/bR
a→ R/bR is also isomorphic to R/dR.

Let s, t ∈ R be elements such that a = sd and b = td. Since every PID is also a
UFD (unique factorization domain), we have gcd(s, t) = 1. Hence,

ker
(
R/bR

a→ R/bR
)

=
{
x + bR ∈ R/bR | ax ∈ bR

}(3.6)

=
{
x + bR ∈ R/bR | (∃y ∈ R) ax = by

}

=
{
x + bR ∈ R/bR | (∃y ∈ R) sdx = tdy

}

=
{
x + bR ∈ R/bR | t | sx}

=
{
x + bR ∈ R/bR | t |x}

= tR/bR = tR/tdR ∼= R/dR.

The last isomorphism is a consequence of the fact that R has no zero divisors and
that t 6= 0. Namely, this implies that the multiplication by t induces an isomorphism
of R-modules R and tR, via which the submodule dR ⊆ R corresponds to the
submodule tdR ⊆ tR.
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Therefore, we are able to compute C1 ⊗R C2, TorR(C1, C2), HomR(C1, C2) and
ExtR(C1, C2) for any two cyclic modules C1 and C2. Note that all of these resulting
modules are themselves cyclic. Therefore, we have the following corollary.

Corollary 3.2. If R is a PID, X is a space such that homology modules
Hi(X; R), i > 0, are all finitely generated, and M is a finitely generated R-module,
then the R-modules Hi(X;M) and Hi(X; M) are finitely generated as well.

Remark 3.3. The results presented in this section are actually purely algebraic.
Instead of a space with finitely generated homology R-modules, one can take a chain
complex of R-modules with finitely generated homology, and consider its homology
and cohomology with coefficients in a finitely generated R-modul M .
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