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A GENERALIZATION OF PTOLEMY’S THEOREM
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Abstract. In this paper, we introduce a novel generalization of the classic Ptolemy’s
theorem, focusing on its triangle version. We explore this generalization’s implications and
provide several applications that illustrate its utility in geometric problem-solving.
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1. Introduction

Ptolemy’s theorem (see [2–4, 6–8, 9, 14, 15]) is a well-known result in plane
geometry, particularly concerning cyclic quadrilaterals. The theorem is stated as
follows.

Theorem 1. [Quadrilateral Version of Ptolemy’s Theorem] Let ABCD be a
convex quadrilateral inscribed in a circle. Then,

AC ·BD = AB · CD + AD ·BC.
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Fig. 1. Illustration of the quadrilateral version of Ptolemy’s theorem

This theorem is a powerful tool for solving elementary geometric problems, espe-
cially those involving cyclic quadrilaterals, circles, and properties related to angles
and distances. The theorem is named after Claudius Ptolemy, a prominent math-
ematician, astronomer, and geographer who lived around the 2nd century CE. In
mathematics, particularly geometry, Ptolemy made significant contributions. He
developed various trigonometric theorems and methods for calculating the positions
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of celestial bodies, including his theorem concerning cyclic quadrilaterals. This the-
orem has become an essential tool in elementary geometry, especially in problems
involving circles.

Ptolemy’s theorem has several extensions and generalizations, such as becoming
an inequality for quadrilaterals, extending to polygons, Casey’s theorem (see [4]),
and even generalizing to three-dimensional space.

Ptolemy’s theorem can also be expressed in a different form for triangles, as
follows.

Theorem 2. [Triangle Version of Ptolemy’s Theorem] Let ABC be a triangle
inscribed in a circle ω. Let P be a point on the arc BC that does not contain A.
Then,

a · PA = b · PB + c · PC,

where a, b, and c are the lengths of the sides BC, CA, and AB of the triangle
ABC, respectively.
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Fig. 2. Illustration of the triangle version Fig. 3. Illustration of the generalization

of Ptolemy’s theorem of the triangle version of Ptolemy’s theorem

The first author of this article has previously provided a generalization of Ptole-
my’s Theorem in [10] and applied it to extend Pythagorean Theorem (see [11]).
Additionally, the author has proven a generalized version of Pythagorean Theorem
using Ptolemy’s Theorem (see [12]).

In this paper, we introduce another generalization of Theorem 2 as follows

Theorem 3. [Generalization of the triangle version of Ptolemy’s Theorem] Let
ABC be a triangle inscribed in a circle ω. Let P1 and P2 be any points on the arc
BC that does not contain A. Then,

a
√

P1A · P2A ≥ b
√

P1B · P2B + c
√

P1C · P2C,
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where a, b, and c are the lengths of the sides BC, CA, and AB of the triangle
ABC, respectively. Equality holds if and only if P1 = P2.

Clearly, when P1 = P2, Theorem 3 reduces to Theorem 2, thus making Theorem
3 a generalization of Theorem 2.

We will provide a proof of Theorem 3 in the following section, along with several
applications of this generalization in the subsequent sections.

2. Proof of Theorem 3

Let P be the midpoint of the arc P1P2 that does not contain the triangle vertex
A on ω. It is evident that PP1 = PP2, and we denote PP1 = PP2 = k. Let D
be the intersection of AP and P1P2. Since P is the midpoint of the arc P1P2,
it follows that AP bisects ∠P1AP2. Combined with the equality of the inscribed
angles ∠AP1P2 = ∠APP2, we find that triangles AP1D and APP2 are similar (by
angle-angle similarity). As a result, we have

(1) AP1 ·AP2 = AD ·AP.

Moreover, since PP1 = PP2, we also get ∠PP1D = ∠PP2P1 = ∠PAP1. Thus,
triangles PP1D and PAP1 are similar (by angle-angle similarity), leading to

(2) k2 = PP 2
1 = PD · PA.

Combining (1) and (2), we obtain

(3) AP1 ·AP2 + k2 = PA(PD + AD) = PA2.

Similarly, we also get

(4) BP1 ·BP2 + k2 = PB2 and CP1 · CP2 + k2 = PC2.
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Fig. 4. Illustration for the proof of Theorem 3

It is clear that when P1 and P2 lie on the arc BC that does not contain A on ω,
the midpoint P also lies on the same arc. Applying Ptolemy’s theorem, we have

(5) a · PA = b · PB + c · PC.
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Using (3)–(5), we derive

(6) a
√

P1A · P2A + k2 = b
√

P1B · P2B + k2 + c
√

P1C · P2C + k2.

By squaring both sides of (6) and simplifying, we obtain

(7) a2(P1A · P2A + k2) = b2(P1B · P2B + k2) + c2(P1C · P2C + k2)

+ 2bc
√

(P1B · P2B + k2)(P1C · P2C + k2).

Using the Cauchy-Schwarz inequality, we have

(8) (P1B · P2B + k2)(P1C · P2C + k2) ≥
(√

P1B · P2B · P1C · P2C + k2
)2

.

Thus, combining (7) and (8), we derive

(9) a2(P1A · P2A + k2)

≥ b2(P1B · P2B + k2) + c2(P1C · P2C + k2) + 2bc
(√

P1B · P2B · P1C · P2C + k2
)

=
(
b
√

P1B · P2B + c
√

P1C · P2C
)2

+ (b + c)2k2

Using triangle inequality, we have b + c > a, therefore (b + c)2 > a2 so that

(10) (b + c)2k2 > a2k2 (if k > 0) and (b + c)2k2 = a2k2 (if k = 0).

From (9) and (10), it follows that

(11) a2(P1A · P2A) ≥
(
b
√

P1B · P2B + c
√

P1C · P2C
)2

,

or equivalently,

a
√

P1A · P2A ≥ b
√

P1B · P2B + c
√

P1C · P2C.

It is easy to see that equality holds when k = 0, or P1 = P2. This concludes the
proof.

3. Some applications

In this section, we will explore several interesting corollaries of Theorem 3.
It is well known that Ptolemy’s theorem generalizes van Schooten’s theorem (see

[1, 13, 15]). Therefore, by applying Theorem 3 to an equilateral triangle ABC, we
obtain a generalization of van Schooten’s theorem as follows.

Corollary 1. [Generalization of van Schooten’s Theorem] Let ABC be an
equilateral triangle inscribed in a circle ω. Let P1 and P2 be points on the minor
arc BC of ω. Then,√

P1A · P2A ≥
√

P1B · P2B +
√

P1C · P2C.

Next, we consider another application, which is also a corollary of Theorem 3.

Corollary 2. Let ABC be a triangle inscribed in a circle ω. Let P1 and P2 be
any points on the arc BC that does not contain A. Then,

a
√

Sa ≥ b
√

Sb + c
√

Sc,
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where a, b, and c are the lengths of the sides BC, CA, and AB of triangle ABC, and
Sa, Sb, Sc denote the areas of triangles AP1P2, BP1P2, and CP1P2, respectively.
Equality holds if and only if P1 = P2.

Proof. We note that the inscribed angles are equal:

∠P1AP2 = ∠P1BP2 = ∠P1CP2.

Let these angles be denoted as α. Then, by Theorem 3, we have

(12) a
√

P1A · P2A ≥ b
√

P1B · P2B + c
√

P1C · P2C.

Since sinα ≥ 0, multiplying both sides of 12 by
√

sinα yields

(13) a
√

P1A · P2A sin α ≥ b
√

P1B · P2B sin α + c
√

P1C · P2C sin α,

or equivalently,
a
√

Sa ≥ b
√

Sb + c
√

Sc.
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Fig. 5. Illustration for the proof of Corollary 2

In Corollary 2, if we assume that ABC is equilateral, we obtain the following
result:

Corollary 3. Let ABC be an equilateral triangle inscribed in a circle ω. Let
P1 and P2 be any points on the arc BC that does not contain A. Then,

√
Sa ≥

√
Sb +

√
Sc,

where Sa, Sb, and Sc denote the areas of triangles AP1P2, BP1P2, and CP1P2,
respectively. Equality holds if and only if P1 = P2.

We derive two more simple corollaries from Corollaries 2 and 3 as follows

Corollary 4. Let ABC be a triangle inscribed in a circle ω. Let ` be any line
that either intersects or is tangent to the arc BC of ω that does not contain A.
Then,

a
√

da ≥ b
√

db + c
√

dc,
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where a, b, and c are the lengths of the sides BC, CA, and AB of triangle ABC,
and da, db, dc denote the perpendicular distances from points A, B, and C to the
line `, respectively. Equality holds if and only if ` is tangent to the minor arc BC
of ω.

Proof. If ` intersects the arc BC not containing A at two distinct points P1 and
P2, let Sa, Sb, and Sc represent the areas of triangles AP1P2, BP1P2, and CP1P2,
respectively. Then,

(14) Sa =
1
2
P1P2 · da, Sb =

1
2
P1P2 · db, Sc =

1
2
P1P2 · dc.

By Corollary 2, we have

(15) a
√

Sa > b
√

Sb + c
√

Sc.

(Note that this inequality is strict because P1 and P2 are distinct points). Thus,
from (14) and (15) (noting that P1P2 > 0), we deduce

a
√

da > b
√

db + c
√

dc.
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Fig. 6. Illustrations for the proof of Corollary 4

Now, if ` is tangent to the arc BC that does not contain A at a point P , let AK
be the diameter of the circle ω, and let R denote the radius of ω so that AK = 2R.
Let A0, B0, and C0 be the perpendicular projections of A, B, and C onto `.
Since ` is tangent to the minor arc BC of ω at P , we have ∠APA0 = ∠AKP .
Furthermore, since APK is a right triangle at P (as AK is the diameter of ω),
triangles AA0P and APK are similar (by the angle-angle criterion). It follows that
PA2 = AK ·AA0 = 2R · da, i.e.

(16) PA =
√

2R · da.

Similarly, we have

(17) PB =
√

2R · db, and PC =
√

2R · dc.
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Now, by applying the triangle form of Ptolemy’s theorem to triangle ABC with P
lying on the arc BC not containing A, we obtain

(18) aPA = bPB + cPC.

From (16)–(18), we conclude that

a
√

2R · da = b
√

2R · db + c
√

2R · dc,

or equivalently,
a
√

da = b
√

db + c
√

dc.

From here, we arrive at the following corollary when ABC is equilateral in Corol-
lary 4:

Corollary 5. Let ABC be an equilateral triangle inscribed in a circle ω. Let `
be any line that intersects or is tangent to the minor arc BC of ω. Then,

√
da ≥

√
db +

√
dc,

where da, db, and dc denote the distances from points A, B, and C to the line `,
respectively. Equality holds if and only if ` is tangent to the minor arc BC of ω.

4. Conclusion

In this paper, we have introduced a new generalization of Ptolemy’s theorem,
extending its classical form to a triangle version. This generalization not only
encompasses the original theorem as a special case but also provides a broader
framework for exploring relationships between points and distances in cyclic tri-
angles. Through a series of corollaries, we demonstrated how this result can be
applied to derive inequalities involving areas and distances, thereby offering new
insights into geometric problem–solving.

The results presented here deepen our understanding of the connections between
classical theorems in geometry, such as Ptolemy’s theorem and van Schooten’s
theorem, showing their interdependence and the power of generalization. We also
highlighted the practical applications of this generalized theorem, which can serve as
a valuable tool for tackling challenging problems in advanced Euclidean geometry.

Future research could explore further extensions of this generalization to higher-
dimensional spaces or other geometric configurations, such as polygons inscribed
in circles. Additionally, the techniques used in this paper may inspire similar gen-
eralizations in other branches of geometry, opening up new avenues for study and
exploration.
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