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TWO HIDDEN PROPERTIES OF HEX NUMBERS
Silvano Rossetto and Giovanni Vincenzi

Abstract. In this paper, we prove that the n-th hex number is exactly the
sum of the number of pieces and the number of triple points associated with an
‘n-balanced’ partition of a triangle obtained by n — 1 cevians from each vertex. More-
over, we see via hex numbers an extension of a Feynman’s result: the (k + 1)-th
hex number is the ratio of the area of a triangle 7 and the area of central triangle
associated with a regular partition of 7 of order 2k + 1.
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1. Introduction

Among many fascinating relationships of numbers are those that suggest (or
were derived from) the arrangement of points representing numbers into a series
of geometrical figures. Such numbers, known as figurate numbers, appeared in
15th-century books and were probably known to the ancient Chinese, but they
were of particular interest to ancient Greek mathematicians (see [14]). In the
Didactics of Mathematics, figurate numbers are objects of relevant interest (see
[1-4, 8-10]; in particular, as highlighted in the article of Kempen and Biehler
[11], the use of figurate numbers can be considered “a heuristic in the field of
problem solving or proving, which involves interesting perspectives of the semiotic
theory of Peirce (‘diagrammatic reasoning’ and ‘collateral knowledge’) and cognitive
psychology (‘schema theory’ and ‘Gestalt psychology’)”.

Polygonal numbers and centred polygonal numbers are special kinds of figurate
numbers (see Figure 1). For an exhaustive introduction to figurate numbers, see [5].

Fig 1. Examples of polygonal numbers and centred polygonal numbers (see [15])
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Particular centred polygonal numbers are centred hexagonal numbers, also
called hez-numbers (see [5, p. 41]). They are Hex(1) = 1, Hex(2) =7, Hex(3) =
19, Hex(4) = 37, ... (see Figure 1) and have many interesting properties (see
A003215 in OEIS, [13]). In this article, we will see two elementary properties
referring to the partition of a triangle which do not seem to be highlighted in the
literature.

DEFINITION. Let 7 be a triangle. An n-balanced partition of T, §,, is a
dissection of 7 obtained by dividing each side in n parts by arbitrary (n—1) points
and joining them to the opposite vertex by (n — 1) cevians. Every intersection of
such cevians will be called repartition point. A repartition point will be called triple
(or cevian) if it is the intersection of three cevians (see Figure 2).

c
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Fig. 2. Two examples of 2-balanced partitions §2 and 8/2
Left: in §2, there are three distinct repartition points.

Right: the cevians of 3”2 are concurrent in a repartition triple point.

Clearly, referring to Figure 2, in §o, we find 7 pieces, while, in §5, we find 6
pieces and 1 triple point. Thus, it appears that in every 2-balanced partition, the
sum of the number of pieces and triple points is in any case 7.

A first question then arises:

Does the invariance property expressed for the configuration of order 2, that
is, that the sum of the number of pieces and of the triple points of any partition
2 of a triangle is constant, hold for partitions of order greater than 27

In this article, we will prove that the answer is positive, and that in general
the sum of the pieces and triple points in any balanced partition of order n is the
n-th centred hexagonal number, Hex(n) (see Theorem 2.1).

Hex numbers appear again in another context referred to as special partitions
of a triangle.

An n-balanced partition is said to be regular if each side is divided in n equal
parts. We will denote these partitions as J:,. A well-known example is the 3-
regular partition of a triangle (see Figure 3, where the area of the inner triangle
formed by these lines is exactly one-seventh of the area of the initial triangle (for
example, see [6]).

We will see that for every regular partition of odd order n = 2k 4+ 1 we can
define a central triangle F,, associated with a regular partition R,, and that the
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A C
AB/3
Fig. 3. The area of F3 = P; P> P3 is one-seventh of ABC

ratio between the area of the triangle ABC and F,, is exactly Hex(k+1) (Theorem
3.1).

2. Hex numbers as the sum of the number of pieces
and triple points in balanced partitions

Hex numbers are connected to triangular numbers T'(n) by an elementary
relation:

(1) Hex(n) =6T(n—1)+1; moreover, it is easy to see that
(2) Hex(n+ 1) = Hex(n) + 6n.

Fig. 4. Left: a visual proof for hex numbers: Hex(n) = 6T (n — 1) + 1, where T'(n — 1) is the
(n — 1)-th triangular number. Note that Hexz(2) = 7, Hez(3) = 19, Hex(4) = 37.
Right: a property of Hex numbers.

REMARK 1. The reader can easily check by visual proof that for any n-centred
polygonal number Cj(n) (I vertices), the above relations (1) and (2) become the
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following:
(3) Ci(n)=1T(n—-1)+1,
(4) Ciln+1) =Ci(n) + In.

We also highlight that easy induction shows the following:
Hex(n) = 3n* —3n + 1.

The following result shows that hex numbers are strongly related to the bal-
anced partitions of a triangle.

THEOREM 2.1. Let §, be an n-balanced partition of a triangle T. Then

the sum of the number of pieces and the number of triple points of §. is equal to
Hex(n).

Proof. In the following, for every positive integer, we will denote by #(F,)
the sum of the number of pieces and the number of triple points of §,.

The statement is trivial if n = 1. Indeed the 1-balanced partition §; has just
one piece and no triple point, so #(F1) = 1; on the other hand Hex (1) = 1.

We have already observed that #(§2) = 7; therefore, since Hex(2) = 7 the
statement also holds for n = 2. Let now n > 2, and proceeding by induction assume
that for every (n — 1)-balanced partition §,—_1, the relation #(§,—1) = Hex(n—1)
holds (see Figure 5).

Fig. 5. Left: (n — 1)-balanced partition §,_1 without triple points.

Right: an (n — 1)-balanced partition S;il with a triple point.
In both the cases, #(§n—1) = #(§,_,) = Hez(n — 1).
Starting from F,,_1, we will show that for every n-balanced partition of 7', we
have #(F,) = Hex(n).

For, let r := C'D be a new cevian from the vertex C. In this way, 7 will be
dissected into more pieces and other possible triple points could appear. Clearly, r
will cross only those pieces just lying between two consecutive C-cevians of §,_1
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Fig. 6. Adjoining to a balanced partition §,_1 one more cevian r,

the number of pieces increases, and some more triple points might appear.

(see Figure 6), so that the other parts of the new dissection coincide with those of
gnfb

Then, to determine the variation in the number of pieces and the number of
triple points in the transition from §,_; to the new dissection §,_1 Ur, we have
to count the number of pieces of §,_1 that are crossed and hence spit into two
pieces by r, and the number of repartition points crossed by r. To show that this
variation is 2(n — 1) — 1, we consider two possible cases:

1) The new cevian r does not pass through repartition points of §,_1: in this
case, r does not generate new triple points, and intersects n —2 A-cevians and
n—2 B-cevians. Thus, also considering the extremes of r we have 2(n—2)+2 =
2(n — 1) points dividing r into 2(n — 1) — 1 segments, each of which divides
a piece of §,—1 (crossed by r). In this case the number of pieces increases by
2(n —1) — 1 (see Figure 7, left).

2) The new cevian r passes through some repartition points of §,_1: in this
case, if t is the number of points crossed by r, we have ¢ new triple points;
moreover, r intersects the cevians of §,—1 in 2(n—2) —t distinct points. Thus,
also considering the extremes of r, we have 2(n—2) —t+2 = 2(n—1) —t points
dividing r in 2(n — 1) — t — 1 segments, each of which divides a piece of F,_1
crossed by r. In this case the number of pieces increases by 2(n — 1) — ¢ — 1.
In total we have an increment of 2(n — 1) — ¢t — 1 pieces and ¢t triple points,
the sum of which is 2(n — 1) — 1 (see Figure 7, right).
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Fig. 7. Left: the cevian r := C'D does not cross any repartition points.
In the new dissection §n—1 Ur of ABC the number of pieces increases by 2(n—1) — 1.
Right: the cevian r := C'D crosses through a repartition point of §,—1 and generates a new

triple point. The number of pieces increases by 2(n — 1) — 2, one less than in the first case.

Starting from the new configuration §,_1 Ur, we may consider an A-cevian
s := AF (see Figure 8). Taking into account that §,_; Ur has an additional C-
cevian, (r), repeating the above argument we have that the number of pieces and
the number of triple points determined by s increases by 2(n—1)—1+1=2(n—1).

e

Fig. 8. Left: the cevian s does not determine triple points.

Right: a possible configuration in which s determines a new triple point.

Repeating the same reasoning again with a B-cevian u := BF' (outgoing from
B) compared to the configuration §,—; UrUs, we have that the increment of the
number of pieces plus the number of triple points is 2(n — 1) + 1 (see Figure 9).

Fig. 9. Two examples of balanced partitions. Slightly modifying the position of D, we see that
triangle GHL collapses at triple point. It turns out that the right partition has one more

triple point and one less piece than the left partition.

Therefore, the sum of the number of pieces and the number of triple points
in the partition §, = §,_1 Ur Us U u, is incremented with respect to those of the
partition §,—1 by 2(n—1) = 1]+2(n—1)+ [2(n — 1)+ 1] = 6(n — 1). Tt follows
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from Eq. (2) and by induction hypothesis that
#(Fn) = #Fno1) +6(n—1)=Hex(n —1)+6(n —1) = Hex(n).
The theorem is proved. m

3. Hex numbers in generalized Feynman’s triangles

The result shown in Figure 3 in Introduction, is often referred to as Feynman’s
theorem and the central triangle is also called Feynman’s triangle. It appears that
the great physicist tried to show the theorem at the end of a dinner with a guest,
Prof. Kai Li Chung of Stamford University during a visit to Cornell University.
Feynman proved the theorem for equilateral triangles, and in the more general
case, there are different proofs for this theorem (see [6]). Indeed, extensions of this
theorem were already known.

A

Fig. 10. Routh’s theorem: The area of P; P> P3 can be given in terms of the ratios
CA; BCh d ABq

, —, an .
A1B C1A B C

One of these theorem, as suggested in [12], is Routh’s theorem, which can be
found for example, in H. S. M. Coxeter, (see [7, Equation 13.55]) in the following
form:

()

Auv — 1)2
Routh’s formula T\ p,v) = (Auv )

ABC,
A+ A+ D)+ p+ 1) (A +v+1)

CAr A\ BCy AB;
4B -V cAa” " BC
P1P2P3 and its area.

Let now n = 2k + 1 be an odd integer, and let fR,, be a regular partition of
order n of a triangle 7 := (ABC). Then every side of 7 is divided into n parts
by 2k cevians. If we consider the k-th cevian (counterclockwise) from each vertex,
ag, by, and ¢, we obtain a central triangle F,, := 7T (%, %, %) (see Figure 11),
that we call the n-th Feynman’s triangle associated with the regular partition R,,.
Clearly, the triangle shown in Figure 3 is the third-Feynman’s triangle associated

with the regular partition Rs.

where = v, and 7 (A, i, v) both denotes the triangle

T
REMARK 2. Let 7 be a triangle. We have seen that 7= 7 = Hex(2).
3

T T
Applying the Routh’s formula, one may check that = 19 and 7= 37, which
5 7
coincide with Hex(3) and Hex(4), respectively.
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Fig. 11. Left, the central triangle F5 associated with the partition Rs: its sides lie on
the cevians a2, b2 and c2. Right, the central triangle F7 associated with the partition

R7: its sides lie on the cevians a3, bz and c3.

REMARK 3. First we note that the area of every n-th Feynman’s triangle can
be obtained by Eq. (5):

k
k+1 k+1 k-+1> (B
k+1

3 _
- ABC.

1)2
E Ok k +

)
[(554)7 + 5+ 108
On the other hand, for every integer k, the number ((%)3 —1)? is different from

0, which implies that the area of F,, is not zero, and in particular, the intersection
points of ag, br and ¢ are three distinct points.

]-'nT(

The relations given in Remark 2 are particular cases of a general result, which
shows another property of hex numbers.

THEOREM 3.1. Let n = 2k 4+ 1 be an odd integer, and let R, be a reqular
partition of order n of a triangle T := (ABC). Then, the ratio of the area of T and
the area of the central triangle F,, associated with R,, is the k + 1-th hex number:

T
F - Hex(k+1)

Proof. The m-th Hex number is
Hex(m) = 3m(m—1)+1 = 3m*—3m+1, (see A003215 in the OEIS, or [5, p. 41]),
so that
Hex(k+1)=3Kk+1)>-3(k+1)+1=3k*+6k+3 -3k —3+1=3k*>+3k+1.
By definition, F,, := 7T (k—, %, %), and by the Eq. (3) we have:

k
2
ABC (M2 4+ 52 41 ()24 i 4 BRE R4
a k —1)2 (Bl _1)2 - T
k %2

E+1)+k*=3k>+3k+1=Hex(k+1). m

Il
—~
o
+A?§‘
[
~
(V)
_|_
=
—~



Two hidden properties of Hex numbers 29

REFERENCES

[1] A. Arcavi, The role of visual representations in the learning of mathematics, Educational
Stud. Math., 52(3) (2003), 215-241.

[2] M. A. Asiru, A generalization of the formula for the triangular number of the sum and
product of natural numbers, Internat. J. Math. Ed. Sci. Tech. 39 (7) (2008), pp. 979-985.

(3] P. Braza and J. Tong, Square-triangular numbers, revisited, The Math. Gaz., 85 (2001),
270-273.

[4] G. Caglayan, Proofs without words: Identities in triangular numbers, The Math. Gaz.,
103(556) (2019), 131-132.

[5] J. H. Conway and R. K. Guy, The Book of Numbers, World Scientific, Singapore, (1996).

[6] R. Cook and G. Wood, Feynman’s triangle, The Math. Gaz., 88 (2004), 299-302.

[7] H. S. M. Coxeter, Introduction to Geometry, Wiley & Son, inc., New york, London, Sydney,
Toronto (1961).

[8] T. Dreyfus, E. Nardi and R. Leikin, Forms of proof and proving in the classroom, In: G.
Hanna and M. de Villiers (Eds.), Proof and Proving in Mathematics Education. The 19th
ICMI Study (2012) (pp. 191-213). Dordrecht: Springer.

S. Jitman, Ch. Phongthai, On the characterization and enumeration of some generalized
trapezoidal numbers, Int. J. Math. Math. Sci., 2017, Article ID 4515249 (2017), 6 pages.

[10] L. Kempen and R. Biehler, Pre-service teachers’ perceptions of generic proofs in elementary
number theory, In: Proceedings of the 9th Congress of the European Society for Research
in Mathematics Education (2015), eds. K. Krainer and N. Vondrova, Prague: Charles Uni-
versity in Prague, 135-141.

[9

[11] L. Kempen and R. Biehler, Using figurate numbers in elementary number theory — dis-
cussing a ‘useful’ heuristic from the perspectives of semiotics and cognitive psychology,
Frontiers in Psychology 11, 2020, p. 1180.

[12] D. Quadling, Letter, Math. Gaz. 89, 113-114, (March 2005).

[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org

[14] https://www.britannica.com/topic/number-game/Paradoxes-and-fallacies#ref396121
[15] https://mathworld.wolfram.com/PolygonalNumber.html

S.R.: Centro Ricerche Didattiche “U. Morin”, Paderno del Grappa, Treviso, Italy
E-mail: rossetto490gmail.com

G.V.: Dipartimento di Matematica, Universita di Salerno, Via Giovanni Paolo II, Fisciano,
Salerno, Italy, ORCID: 0000-0002-3869-885X.

E-mazil: vincenzi@unisa.it



