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Abstract. A short and elementary proof is given of a celebrated eigenvalue-
perturbation result due to Alfred Brauer.
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In 1952, Alfred Brauer [1, Theorem 27] proved the following useful eigenvalue
perturbation result, which is used in, e.g., deflation techniques when computing
eigenvalues (see, e.g., Saad [6, Section 4.2]) and the longstanding nonnegative in-
verse eigenvalue problem (see, e.g., Julio and Soto [3] and references therein).

Theorem 1. Let A be an n-by-n matrix with complex entries and suppose
that A has eigenvalues {λ, λ2, . . . , λn} (including multiplicities). If x is an eigen-
vector associated with λ and y ∈ Cn, then the matrix A + xy∗ has eigenvalues
{λ + y∗x, λ2, . . . , λn}.

Brauer’s proof and a recent proof by Melman [4] rely on the principle of
biorthogonality. While both proofs are elementary, they are somewhat lengthy.
Meanwhile, Horn and Johnson gave two brief proofs, but the first relies on the
adjoint of a matrix [2, p. 51] and the second requires a unitary matrix [2, p. 122] as
opposed to just an invertible matrix (see details below). Another proof by Reams
[5, p. 368] implicitly relies on Schur triangularization.

The proof below relies on the fact that similar matrices are cospectral, an
elementary fact that is covered in a first-course in linear algebra.

Proof. Let Q be any invertible matrix whose first column is x—say Q =
[ x R ]. Notice that Q−1x = e1—the first canonical basis vector of C—and that
Q−1AQe1 = λe1. A simple calculation reveals that

Q−1(A + xy∗)Q = Q−1AQ + Q−1xy∗Q

=
[

λ u∗

0 C

]
+ e1y

∗Q =
[

λ + y∗x u∗ + y∗R
0 C

]
,

i.e., σ(A) = {λ} ∪ σ(C) and σ(A + xy∗) = {λ + y∗x} ∪ σ(C).
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