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CONICS CONSTRUCTIONS BY PINS AND STRING:
TANGENTIAL AND PHYSICAL PROPERTIES
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Abstract. We introduce conic sections’ construction by pins and string, with-
out rigid linear components. In addition to well-known methods (as gardener’s el-
lipse), we analyze some recent constructions based on tangent properties and, as an
original contribution, extend these constructions to all kinds of conics. In this set-
ting, the physical analysis of the string’s tension permits us to smoothly analyze these
constructions since the first years of high school.

From a didactical perspective, we think that such ideas can be fruitfully adopt-
ed in laboratory activities to deepen the tangential properties of conics by a rich
interaction between mathematics and physics. Furthermore, the simplicity of the re-
quired materials allows the introduction of these manipulative activities in distance
learning.
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1. Introduction

In education, historical machines’ adoption is a well-established laboratory ex-
perience for mediating mathematical meanings [6]. Specifically, many studies deep-
ened the construction of geometric curves as traces realized by practical methods.
As it is well known, there are many ways to trace conic sections, both by elementary
tools (the so-called “gardener’s ellipse”) and by more complex machines (the var-
ious parabolo/ellipso/hyperbolo-graphs1). The utility of such different approaches
in education is widely accepted [2].

The gardener’s method of drawing an ellipse is one of the best known and ele-
gant examples of geometric constructions beyond ruler and compass. The required
tools are elementary: a string with its ends tied in two points of the plane or, as
a little variation, a loop of string put around two pins. Call “focal” the vectors
connecting any point of the curve with the two foci: the taut string naturally em-
bodies the property of keeping constant the sum of the two focal-vectors lengths
(such a sum is the length of the major axis of the ellipse). Besides this construc-
tion, string constructions of conics (not only ellipses) have been introduced by the
Persian Ibn Sahl at the end of the 1st millennium, with the adoption of a rod for
the constructions of hyperbolas and parabolas [11]2.

1Cf. http://www.mmlab.unimore.it/site/home/laboratorio-visite-mostre/theatrum-
machinarum/1.-sezioni-coniche/artCattm-sez-coniche.16002690.1.99.1.4.html

2See also https://imaginary.org/film/mathlapse-constructions-by-pin-and-string-conics.
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Recently, Dawson et al. [4] proposed new constructions for gardener’s hyper-
bolas, adding to the classical gardener’s tools a point in friction with the base plane
that is dragged by the string. The dragged point can be a heavy load, a magnet
on a metal plate or merely a pen/crayon pressed on a paper base. In this work,
we propose an elementary analysis of these constructions by focusing on strings’
physical tensions. Furthermore, as a new variation, we extend these constructions
to ellipses and parabolas. We think that teachers or trainers can fruitfully intro-
duce the constructions proposed in this paper in didactical laboratory activities.
Furthermore, the use of cheap and easy-to-get materials appears very useful to
perform laboratory activities also for distance learning (during the lockdown, we
tested it with Italian University students).

For some of these constructions, the peculiarity is that they trace conics in
a way not directly linked to the length of the focal vectors but related to conical
tangent properties. Although such properties have many physical applications (as
conical mirrors and antennas), the link between these properties and the focal-
distance definitions of conics is generally not sufficiently deepened (at least in the
Italian high school system). Furthermore, the analysis of these constructions con-
stitutes a profound interplay between mathematics and physics, an increasing topic
in the educational community [14].

To conclude the introduction, we have to mention the historical role of con-
structions by a point dragged by a string, the so-called “tractional motion” [3]. At
the basis of Leibniz’s geometrical legitimation of infinitesimal analysis [1], construc-
tions by traction constituted, at the end of the 17th century, a general method to
trace transcendental curves by solving the inverse tangent problem (i.e. to find the
curve whose tangent has to satisfy certain properties). Although almost forgotten,
in recent years, a repurposing of these constructions arose with foundational [8],
computational [9], and didactical [7] goals. From this perspective, we hope that
this paper can provide another step in bringing in educational activities the various
aspects of tractional motion.

2. Gardener’s constructions

The most famous construction of a conic is the so-called gardener’s method
for the ellipse. As illustrated in Figure 1, it traces an ellipse thanks to the string’s
behavior, which is flexible but inextensible. Therefore, the string, its total length
remaining constant, satisfies the ellipse’s definition.

Given two foci, one can draw a hyperbola as visible in the left of Figure 2.
Besides “pins-and-string”, a rod imposes the constant focal-vectors difference. To
our knowledge, the following variation of Ibn Sahl’s construction without the rod
appeared only recently [4]. As visible in the right of Figure 2, attach P on a string
passing through the foci F and C. By dragging the string by both extremities, both
distances PF and PC decrease the same length, so the taut string imposes P to
keep the focal-vectors’ difference. By traction, P traces the branch of a hyperbola
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Figure 1: The gardener’s ellipse. The constant length of the

string ending in the foci F1 and F2 defines an ellipse.

Fig. 2. Left: an early modern print of Ibn Sahl’s hyperbola construction by string and ruler

[12, p. 67]. Right: the new gardener’s hyperbola without ruler [4, Fig. 6].

from a starting point to the vertex. For the similitude to the ellipse case, we call
such a construction the “gardener’s method for hyperbolas”.

3. Introducing tractional constructions

Ellipse and hyperbola “gardener’s” constructions rely on the distances from
the foci, and the role of the taut string is to pose certain conditions on these
distances. However, by a slight modification of the gardener’s hyperbola, we get a
new construction based on tangent properties [4]. In this case, it is unavoidable the
role of the traction: given a material point P on a base surface with non-neglectable
friction, we drag P by pulling a string in touch with P .

This kind of construction, called tractional motion, was foundationally rele-
vant in early modern mathematics, cf. [3, 13]. The first appearance is attributed
to the 1670s famous Perrault’s construction of the tractrix. As visible in Figure 3,
consider a pocket watch on a horizontal plane: if we slowly move the chain’s end
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along a line, the pocket defines a tractrix. The curve is constructed because the
taut chain remains tangent to the tractrix. Therefore, the tractrix is generated
by the properties of its tangent (inverse tangent problem). Before the end of the
17th century, tractional constructions constituted the geometrical justification of
Leibniz’s calculus. However, these constructions used the dragged point tied on a
string, while we generalize this idea by considering that the point-to-drag can slide
along the string.

Fig. 3. Perrault’s watch (construction of the tractrix). The motion of A to the left

drags the clock B making the chain AB tangent to the curve traced by B.

In the following sections, we introduce methods to draw conics by a dragged
point. These methods rest on well-known tangent properties [5]. As visible in
Figure 4, the tangent to a conic has to bisects a certain angle related to the foci
position. Such tangent properties are crucial to construct burning glasses and
parabolic antennas.

Fig. 4. Tangent properties of conics. The tangent line (represented by dashed lines) has to bisect

the angles defined by the lines connecting the point on the curve and the foci. In the third case,

one focus is a point at infinity; thus, we have to consider a line parallel to the parabola axis.
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4. Between maths and physics: tensions and bisectors

Differently from the Lagrangian approach of Dawson et al [4], this manu-
script proposes an elementary analysis of tractional constructions (suitable for high
schools). Physically, we introduce the main property for string tension to pose a
tangent condition about bisectors. Assume a heavy point P moving on a horizontal
plane with non-neglectable friction. On the plane, let P be subject to two tensions−→
T1 and

−→
T2 of equal modulus and pointing respectively to the points P1 and P2,

as in Figure 5. These tensions are generated by a string over which P can slide.
The resulting force

−→
T acting on P , being the sum of two tensions of the same

magnitude, bisects the angle formed by
−→
T1 and

−→
T2 . As explained below, if we drag

P slowly, it has to move along the bisector of the angle P1PP2.

Fig. 5. A heavy point P subject to two tensions of the same magnitude, if dragged slowly

enough, moves along the bisector of the angle defined by the tensions’ directions.

First of all, assume neglectable sliding friction between the string and the
body P . To clarify the ideas, consider P as a cylinder (not a dimensionless point)
with the string around its lateral surface. If the string sliding friction is neglectable
and the cylinder P is not rotating initially, P won’t rotate when pushed by the
string. Thus the motion of P has to be a pure translation. Therefore, being null
the angular momentum, the tensions T1 and T2 have to be equal in magnitude.

To underline the non-uniqueness of the modelization, we can provide different
models to justify the motion of P :

1. We can assume P moving with many micro-displacements (before and after
the impulse, its speed is null).
For any micro-displacement, we can consider applying a constant force in an
interval ∆t. In this interval, being null the initial velocity, the instantaneous
velocity is oriented as the driving force

−→
T1 +

−→
T2 . The frictional force

−→
F fr

has the same direction of the velocity; without initial velocity,
−→
F fr does not

modify the direction of the resulting force. Being the two tensions
−→
T1 and
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−→
T2 equal in magnitude, their sum bisects them and gives the direction of P ’s
displacement.

2. We can analyze the forces involving a continuous motion (while P moves
slowly).

According to the trajectory of P ,
−→
T =

−→
T1 +

−→
T2 can be split into tangential

and centripetal components (
−→
T ‖ and

−→
T ⊥), as visible in Figure 6. Besides

−→
T ,

also the dynamical friction force
−→
F fr acts in P , with direction opposite to

the motion. Assuming the Coulomb model, Ffr = µmg (the dynamic friction
coefficient µ depends on the mass and the contact surfaces; in our case Ffr is
constant).

Assuming P moving at a constant velocity, the tangential component of the
resultant force has to be null, hence T‖ = Ffr. Considering the centripetal
force T⊥ = mv2/r (r is the instantaneous radius of curvature) and assuming
the curvature radius of P ’s trajectory not to become less than rmin on a given
branch of trajectory, T⊥/T‖ = v2/(µrg) ≤ v2/(µrming).

The angular difference between the tension bisectrix and
−→
T is tan(−1) T⊥/T‖.

Hence, the direction of
−→
T well approximates the tensions bisectrix if T⊥/T‖

is neglectable. To grant T⊥/T‖ < ε, it suffices to keep v <
√

εµrming

Fig. 6. Forces acting on P and decomposition of the driving force

(tangential and normal component).

5. Hyperbolas by traction

In this paper, we would like to provide some activities based on pins-and-string
constructions. After proposing the analysis of the gardener’s hyperbola (Section
2), the instructor can pose the following problem.
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Problem 1. In the gardener’s hyperbola, point P is attached to the string.
What happens if we let P free to move along the string while subject to the plane’s
friction?

Assume that a force
−→
F pull is applied to pull strings. Such a force acts on P

with two forces
−→
T F and

−→
T C pointing respectively to F and C (consider the

pegs as in the right of Figure 2). For the magnitudes, considering a neglectable
string mass, Fpull = TF = TC . For Section 4, by dragging P slowly enough,
its direction has to bisect FPC. But the direction of P is tangent to its
trajectory: for the tangent property of Figure 4 (center image), even in this
case, P moves along the hyperbola of foci F and C.
Remark. As we get the same curve with P fixed or not on the string, the

string sliding friction does not change the trajectory in this particular case. To
provide an example in which sliding friction is relevant, we can imagine another
variation. As illustrated in Figure 7, consider the string passing through C with
an extremity attached in F (in the image, the pulling force is parallel to FC, but
that is not necessary). If the heavy point P is constrained to touch the string (with
neglectable sliding friction), the tensions

−→
T F and

−→
T C (pointing respectively to F

and C) act on P with equal magnitude. Hence, also this time, the trajectory is a
hyperbola of foci F and C. On the other side, if we consider non-neglectable sliding
friction between P and the string, we should add a force (directed perpendicularly
to
−→
T =

−→
T F +

−→
T C) that would make P no longer move on a hyperbola.

Fig. 7: Another hyperbola construction [4, Fig. 7]

6. Other conics by traction

Above, the proposed activities involved the analysis of some constructions. In
this section, we imagine the instructor asking for the invention of some construction
methods by modifying the previous sections’ ideas. That could enrich students’
approach to related topics and their operative reasoning.

Specifically, we generalize tractional constructions to ellipses and parabolas.
For the hyperbola, the direction in which we pull the string does not modify the
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resulting trajectory (tensions point to the foci). On the contrary, the pulling di-
rection becomes relevant for the following constructions. Even though elementary,
such string constructions look new to us.

Problem 2. Given two pins F1 and F2 on the plane, a string attached to F1,
in which direction do we have to pull the string to make the dragged point P move
along an ellipse of foci F1, F2?

As illustrated in Figure 8, after fastening an extremity of the string in F1

and passing across the heavy point P , we can pull the other extremity A of
the string with a direction opposite to PF2. By Section 4, neglecting sliding
friction, we have that the direction of P has to bisect the angle F1PA. As
illustrated in the left of Figure 4, this is the tangent property of the ellipse of
foci F1 and F2.

Fig. 8: A tractional construction of an ellipse of foci F1 and F2.

Problem 3. Given a pin F1 on the plane with a string attached and a line r
passing through the pin, in which direction do we have to pull the string to make
the dragged point P move along a parabola of focus F1 and axis r?

A parabola is an ellipse with one focus F2 at infinity. Call A the end of the
string, that corresponds to keep constant the direction PA. Therefore, for a
parabola of focus F1 and axis r (as illustrated in Figure 9), after fastening an
extremity of the string in F1, we can pull the string downward with a direction
parallel to r. For the usual reasoning, we have that the direction of P has
to bisect the angle F1PA. As illustrated in the right of Figure 4, this is the
tangent property of the parabola of focus F1 and axis r (perpendicular to the
directrix).
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Fig. 9: A tractional construction of a parabola of focus F1 and axis r.

7. Conclusions

This paper introduces tractional constructions of conics with some ideas for
laboratory activities (some of these constructions are very recent, and others are
original). For all of them, we provided elementary analyses, allowing their intro-
duction since high school. These constructions can be implemented with simple
tools (strings, pins, crayons, or pens) and appear didactically interesting for the
following reasons.

Preliminary tests (with two Italian University students in mathematics and
physics) showed the emergence of intense curiosity to construct conics by their
tangent properties. Indeed, being habituated to define conics by focal distances,
these methods implied a change of perspective for very familiar objects.

In today’s digital era, the materiality of the proposed constructions can be
considered an interesting plus. Indeed, concrete manipulations can help compre-
hend the underlying theoretical concepts. Such tracing methods allow us to feel
the string tension and the resistances while dragging; others explicitly require vi-
suomotor coordination (as when keeping the alignment for ellipses and parabolas).
According to the embodiment studies in math education [10], we think that all
these mind-body dynamics can produce profound and significant learning.

In these years, a special emphasis of the educational community involves the
integration of mathematics and physics. As well expressed by Tzanakis [14], math-
ematics and physics have always been closely interwoven: mathematics is the lan-
guage of physics, and physics constitutes a natural benchmark for mathematical
theories. Our constructions constitute a crossing between the two disciplines, pro-
viding an exciting activity to mathematically model a simple (but not trivial) phys-
ical setting. Physical contents can be treated at different levels (forces/tensions in
high school, Lagrangian mechanics at tertiary education) and can naturally in-
troduce many interesting variations (e.g., considering what happens if the string is
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elastic or studying the friction between the dragged point and the string considering
the traced curves).

To conclude, a future aim is to deepen these constructions’ potentials in ex-
perimental researches with different audiences, from high-school students to teacher
training.
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