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GENERALIZED ASSOCIATIVE AND COMMUTATIVE LAWS

Milosav M. Marjanović

Abstract. School algebra is not an abstract mathematical discipline but its
variables denote the numbers from a number system which is under elaboration. Basic
properties of a number system are in the same time basic rules of algebra. Which
other rules have to be deduced is a matter of concern to those who research problems
of teaching algebra in school.

The commutative and associative laws are often seen formulated in math school
books. But they have a full effect when they are used to define numerical value of
sums and products of three and more members and when it is proved that this value
is independent of the way how summands and factors are associated and ordered. To
accept these proofs with understanding, students have to be prepared for deductive
reasoning and to be acquainted with all different ways how elements of a set can
be ordered and with the method of mathematical induction as well. Hence, it is a
student of a serious secondary school of age 14 or more.
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1. Introduction

The essence of our approach to the study of number systems is the focus on
the questions of transfer of properties of natural numbers to the systems of integers,
positive rational, rational and real numbers. As a starting point, we take the basic
operative properties of the system of natural numbers. These properties, when
taken abstractly, as the axioms of a structure {S,+, ·, <}, where S is a non-empty
set, “+”, and “·” are two binary operations and “<” is an order relation, define a
structure that is called the ordered semifield (See [1] and [2]). The system of natural
numbers and all its extensions – systems of integers, positive rational, rational and
real numbers are examples of the ordered semifield.

Thus, proceeding more concretely, a property deduced from the basic operative
properties of the system of natural numbers is transferable to all above mentioned
systems (the Peacock’s principle of permanence) or, reasoning more abstractly, a
property proved to be valid in the ordered semifield will be the property of all sys-
tems which are examples of the ordered semifield. In this note we will be occupied
with the properties of sums and products of three or more numbers (members of
the ordered semifield) deduced from the associative and commutative laws.
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In school mathematics number systems are elaborated and rounded off in this
and that way. Operative properties are sometimes founded on a solid intuitive
ground, the other time just imposed by means of repeated exercises. Early algebra
has its earliest stage in the period of learning natural numbers, then the periods
of positive rational, rational and real numbers follow. In each of these periods
dealing with the corresponding operative properties using literal expressions is the
early algebra at that stage. We also hope that our approach of discussing number
systems will throw some light on the problems of learning algebra in school.

Of all basic operative properties of number systems, those which are most
frequently and explicitly formulated in school books are the commutative and as-
sociative laws for addition and multiplication. In primary books these laws are
seen to be used to ease calculation. In the upper classes, children learn arithmetic
and algebra doing more and more exercises. So they operate with sums and prod-
ucts of three and more numbers changing the order of summands and factors and
associating them freely. With time, routine overcomes and the question if such
manipulations are legitimate never raises.

In the case of natural numbers, the dependence of the idea of such numbers
on the experience of sets at the sensory level and, in particular, independence of
that idea of number of the way how elements of sets are grouped (Cantor principle)
is a solid intuitive ground upon which the meaning and the properties of sums of
three and more numbers are spontaneously acquired. Let us also add that when a
property is induced intuitively, then there is no way to ensure its transfer from one
number system to another. All in all, in school mathematics sums and products
of three and more numbers are learnt by drill, while commutative and associative
laws, when formulated, mainly figure as decorative attachments.

2. Significance of commutative and associative laws

Now we concentrate on discussing sums (and the way of dealing with prod-
ucts is carried out analogously). When addition is strictly conceived as a binary
operation, then the expressions (a + b) + c and a + (b + c) have a precise meaning,
whereas a + b + c does not. The former two expressions indicate summing of three
numbers by associating them two by two. The latter expression is called the sum of
three numbers, but such a term has a clear syntactic meaning without determining
the numerical value of that sum. This value is defined (taken) to be (a + b) + c,
having so the order of summands and the way of their association fixed. But, as
we are going to check it, the value of the sum of three numbers is independent of
both, the order of summands and the way of their association.

Indeed, applying alternately commutative and associative laws, we obtain the
following series of equalities:

(a + b) + c = a + (b + c) = a + (c + b) = (a + c) + b = (c + a) + b

= c + (a + b) = c + (b + a) = (c + b) + a = (b + c) + a

= b + (c + a) = b + (a + c) = (b + a) + c.
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As we see there are six different ways of ordering summands (six permutations
of the letters a, b and c). To each of these orderings, two ways of association of
summands match. Altogether, it is twelve different ways of addition of two by
two summands which produce one and the same number – the value of this sum.
Therefore the sum of three numbers also has a precise semantic meaning being the
number which is its value and which is simply denoted writing a + b + c.

Now let us consider the sum of four numbers a1 + a2 + a3 + a4 taking that its
numerical value is s = (a1 + a2 + a3) + a4 and let us also notice that each way of
association of summands of this sum ends as (a1+a2+a3)+a4, (a1+a2)+(a3+a4)
and a1 + (a2 + a3 + a4). Being

(a1 + a2 + a3) + a4 = ((a1 + a2) + a3) + a4 = (a1 + (a2 + a3)) + a4

and

a1 + (a2 + a3 + a4) = a1 + ((a2 + a3) + a4) = a1 + (a2 + (a3 + a4)),

we see that there are 5 different ways how these summands can be associated.
Adding a4 to each ak(1) + ak(2) + ak(3) of 6 differently ordered summands of a1 +
a2 + a3, the following 4 sums are obtained.

ak(1) + ak(2) + ak(3) + a4, ak(1) + ak(2) + a4 + ak(3),

ak(1) + a4 + ak(2) + ak(3), a4 + ak(1) + ak(2) + ak(3).

We see that there are 24 such sums and, therefore, 5 · 24 ( = 120) different ways
how the summands of the sum a1 + a2 + a3 + a4 can be ordered and associated.

Applying successively the associative law the following equalities result:

s = (a1 + a2 + a3) + a4 = ((a1 + a2) + a3) + a4 = (a1 + a2) + (a3 + a4)

= a1 + (a2 + (a3 + a4)) = a1 + ((a2 + a3) + a4) = a1 + (a2 + a3 + a4),

what proves that the summands of the sum a1 + a2 + a3 + a4 can be associated in
all ways and these ways preserve the value s.

Let now ak(1) +ak(2) +ak(3) be any permutation of summands of a1 +a2 +a3.
Then

s = (ak(1) + ak(2) + ak(3)) + a4 = ((ak(1) + ak(2)) + ak(3)) + a4

= (ak(1) + ak(2)) + (ak(3) + a4) = (ak(1) + ak(2)) + (a4 + ak(3))

= ((ak(1) + ak(2)) + a4) + ak(3) = (ak(1) + ak(2) + a4) + ak(3).

Since the summands of the sum of three numbers can be permuted freely, we also
have

s = (ak(1) + a4 + ak(2)) + ak(3) = (a4 + ak(1) + ak(2)) + ak(3).

Therefore, the numerical value of the sum of four numbers is independent of the
way how its summands are associated and ordered.

In the case of the sum of three numbers, the independence of its value of the
order of summands and the way of their association has been verified directly. But
in the case of four summands, the number of needed verifications discourages us to
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think of such an idea. So we had to sketch a proof of that fact which also reflects
the way how the generalized associative and commutative laws are proved.

Before we proceed with formulation of these laws and their proving we fix the
meaning of the notations that follow. Namely, in the case of the sum a1 + a2 + a3,
we put

A1 = a1, A′1 = a2 + a3, A2 = a1 + a2, A′2 = a3

For m > 3 and a1 + · · · + am we put A1 = a1, A′1 = a2 + · · · + am and for
k = 2, . . . , m− 2

Ak = a1 + · · ·+ ak, (a1 + · · ·+ a2 = a1 + a2)

A′k = ak+1 + · · ·+ am, (am−1 + · · ·+ am = am−1 + am)

and Am−1 = a1 + · · ·+ am−1, A′m−1 = am.
Now we formulate the generalized associative law and we prove it applying

mathematical induction.

2.1. For each n > 3, all possible associations of two by two summands of the
sum a1 + · · ·+ an produce one and the same number – the numerical value of this
sum.

Proof. The statement is true for the sums of three numbers. Let us suppose
it is true for each sum of m numbers, when m < n. As it is customary, we will be
using the same symbol a1 + · · · + am to denote the sum of m numbers as well as
its value.

By application of the associative law the following equalities hold true

((a1 + · · ·+ an−1) + an = (Ak + A′k) + an = Ak + (A′k + an),

k = 1, . . . , n − 2. Therefore, we see that all n − 1 final associations of the sum
a1 + · · · + an are equal to one and the same number – the numerical value of this
sum.

Our next step is formulation and proving of the generalized commutative law.

2.2. The value of the sum a1 + · · · + an is not effected by permutation of its
summands.

Proof. The statement is true for the sums of three numbers. Let us suppose
it is true in the case of sums a1 + · · ·+am for each m < n. Let a1 + · · ·+an be the
sum of n numbers and let s = (a1 + · · ·+ an−1) + an. Let ak(1) + · · ·+ ak(n−1) be
a permutation of the summands a1 + · · ·+ an−1. Then, according to the induction
hypothesis, s = (ak(1) + · · · + ak(n−1)) + an and applying both associative and
commutative laws, we also have

s = ((ak(1) + · · ·+ ak(n−2)) + ak(n−1)) + an

= (ak(1) + · · ·+ ak(n−2)) + (ak(n−1) + an)

= (ak(1) + · · ·+ ak(n−2)) + (an + ak(n−1))

= ((ak(1) + · · ·+ ak(n−2)) + an) + ak(n−1)
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= (ak(1) + · · ·+ ak(n−2) + an) + ak(n−1).

Relying on the induction hypothesis again, from the position of (n−1)-th summand
of (ak(1) + · · ·+ak(n−2) +an)+ak(n−1), an can be placed in the position of 1st, 2nd,
. . . , (n−2)-th summand. Since in the case of all these positions, the corresponding
sums have their numerical value equal to s, we have this statement proved.

At the end, let us note that these two statements are usually proved to be
valid in the case of any binary operation which is associative and commutative.
Thus, they are valid for multiplication and their formulations and the proofs are
identical with the case of addition, only the addition sign “+” has to be replaced
with the multiplication sign “·”. Of course, our interest here is confined to number
systems and the deduction of properties from the basic properties of natural num-
bers with 0. Then, the properties deduced in that way are transferable to all other
number systems including the system of real numbers. All in all, let us remark that
everything here is accommodated to the reader who faces these facts for the first
time.

3. A somewhat skeptical conclusion

Problems of finding the sum of several numbers are found here and there in
elementary school math books. A case of finding such a sum is known as the story
of Gauss. Namely, Gauss as a boy in elementary school was often bored with the
tasks that his teacher used to give to the class. One day, in order to keep Gauss
busy, the teacher assigned him to add all numbers from 1 to 100. Gauss associated
the first and the last number, the second and the second-last number and so on:
(1 + 100) + (2 + 99) + · · ·+ (50 + 51) obtaining so 50 summands each equal to 101.
So the sought sum is 50 · 101 = 5050. This quick solution amazed and impressed
the teacher of Gauss.

Another very well-known example of the sum of several numbers, found in
math books of elementary school, is Pythagoras formula for the sum of successive
odd numbers: 1 + 3 + · · ·+ (2n− 1) = n2. Let us recall how the formula is derived.
Taking a square pattern of n rows of n dots and when the dots are grouped in two
different ways:

1. First dot in the first row, 3 following dots arranged in the form of “right angle”
and so on, finally 2n−1 dots arranged in the form of “right angle”. Altogether
it is 1 + 3 + · · ·+ (2n− 1) dots.

2. In each of n rows there are n dots, altogether it is n · n dots.
Two expressions denote the number of dots in the pattern, thereby they rep-

resent the same number.
On the blackboard in the Repin’s painting Mental Arithmetic, calculation of

the value of the expression (102 + 112 + 122 + 132 + 142) : 365 is assigned to the
boys. What could be the train of thought:

1. 102 + 112 + 122 + 132 + 142 = 5 · 100 + (20 + 40 + 60 + 80) + (1 + 4 + 9 + 16) =
500 + 200 + 30 = 730
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or else

2. (12 − 2)2 + (12 − 1)2 + 122 + (12 + 1)2 + (12 + 2)2 = 5 · 122 + 2(1 + 4) =
720 + 10 = 730.

In the first case summands are permuted and associated as the brackets com-
mand it. In the second case, each of differences 122 − 2 · 12 · 2 and 122 − 2 · 12 · 1
is taken as a summand which is associated with 2 · 12 · 2 and 2 · 12 · 1 respectively,
producing 2 · 122. Both these sums are specific case of the relation (a− b) + b = a,
(b 6 a) which is valid for all natural numbers a and b, when b is not greater than a.
Indeed, putting a − b = x and by interdependence of addition and subtraction,
a = x + b = (a − b) + b. This relation is transferable from the system of natural
numbers to other number systems and it is an instance of a rule of algebra “with
reason”. (For rules imposed by drill is said that they are without reason.) Let us
also remark that in the system of integers, the difference a− b is taken as the sum
a+(−b). Then, ny the associative law (a−b)+b = (a+(−b))+b = a+((−b)+b) = a.

A solid intuitive basis upon which sums of several natural numbers gain their
meaning and properties is the generalized additive scheme. This scheme is the
union of n disjoint sets S1, S2, . . . , Sn of cardinality a1, a2, . . . , an, respectively.
Then, cardinal number of the union is denoted by a1 + a2 + · · ·+ an. (This scheme
is an abstract model for all those concrete situations in which sums of three or more
numbers are involved). But when a concept and its properties are derived upon
an intuitive basis, then there is no way to transfer them to the extended number
systems.

School algebra is not a branch of abstract algebra but its variables always
denote numbers from a number system. Its basic rules are basic properties of
the concerned system. In addition to these basic rules which other rules have
to be deduced to serve as the rules for the transformation of literal expressions?
An analysis relied upon our approach of study of numbers systems could provide
an answer. Proving properties is a logical procedure par excellence and such an
elaboration of algebra is feasible in good secondary schools and when student’s
cognitive development is appropriate (age 14 and more). What of it can be found
earlier (elementary school) in early algebra? I do not know where to find an answer
to this question.
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