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Abstract. In this paper we start to analyze the first topics of the school arith-
metic. To help the reader recognize the fundamental position and role of the system
of natural numbers, a historical glance at the evolution of the number idea is given.
Then, the block of numbers 1–10 is seen as a conceptual structure which dictates a
series od didactical steps and procedures. As it is easy to observe, many textbooks
contain rashly gathered groups of arithmetic problems without bringing before the
mind of cognizing subject the effects of these steps. Since at this stage, numbers and
operations as well as all their properties are perceptual entities and experiences, the
role of drawings, from those showing a piece of reality to the schematic ones which
condense the carrying meaning with an elegant simplicity, is particularly emphasized.
A bad practice of “proving” the arithmetic rules by means of calculation of values of
a few related numerical expressions is also criticized. Though, we have given the chief
points only, we expect that the sketch of this block will reflect some good practice in a
pragmatic way.
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7. Steps in building the system of natural numbers

Arithmetic is the most elementary branch of mathematics what also underlines
its fundamental position. Understood as a school subject, the utilitarian value of
arithmetic is usually reduced to the art of computing and the cultural value is more
fluid and dependent on the whole educational bundle in which it is tied up. The
latter also includes so called disciplinary value meaning that this subject does much
towards maturing and steadying the child. Part of the cultural value of arithmetic
lies in its connection with man’s life, with his social environment and with the
development of his occupations.

If in the by gone times arithmetic was taught to give the pupils knowledge of
facts alone, in the contemporary school, that which transcends such knowledge is
exceptionally important and serves to prepare them for further education. With
this in mind, all innovations or better to say renovations have to be considered.
And when changes are made in something what was established in the past, first
we have to understand it from historical point of view.

7.1. A historical glance at arithmetic. Here we condense some of the
most important facts from history of arithmetic in the way how they are widely
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accepted (see, for example, [10], [12], [13])1. So we start to retell shortly a very
long tale.

Still existing grammatical forms in some contemporary languages bear the signs
of a number system which consisted of one, two and many. Inflexional endings of
nouns in Slavic languages, which follow numbers are changed when five is crossed
what serves as evidence of the existence of a system consisting of five numbers and
being developed in some preliterate cultures. Since the naming of numbers mean
their abstract conception, the beginnings of arithmetic evidently belong to the very
remote past. This look back at prehistory also reveals numbers as man’s primary
concepts.

Texts inscribed on durable clay tablets (from about 2000 B. C.) found in
Mesopotamia yield much information on the Babylonian arithmetic.

Using special symbols for 1 and 10, the Babylonians combined their groups on
an additive basis to denote numbers 1 to 59. Their number system had the base 60
and they used positional notation. To indicate absence of a number they often used
spacing (what could cause misinterpretation) and in a latter period a separation
symbol appeared (playing the role of 0, except, at the right-hand end) . To indicate
addition, the Babylonians joined two numbers together and for subtraction and
multiplication they had special signs denoting these operations. To divide by a
number, they multiplied by its reciprocal converted to sexagesimal fractions.

The most remarkable feature of the Babylonian arithmetic is the invention of
the place value system which permits an easy performance of operations on the
very signs representing numbers. It is quite natural to suppose that, thanks to
the caravan routes through Babylon, the Hindus had been acquainted with this
system before they invented their own decimal one. Thus, the way of indication
of numbers and calculating technique created in the Babylonian era remain as a
permanent achievement of mankind.

From the neolithic period emerged a quite autonomous culture in Egypt, when
and where, a specific corpus of mathematical knowledge was created, mostly known
to us by means of two discovered papyri: the Ahmes papyrus (now in the British
Museum) and the Moscow papyrus, both dating from about 1700 B. C. The Egyp-
tian number system had the base 10 and their arithmetic was predominantly addi-
tive in character (with multiplication being reduced to repeated addition). Where-
as the Babylonians used the same symbol which denoted its value by position, the
Egyptians indicated each higher unit by a new symbol. Thus, there was no pos-
sibility to indicate bigger and bigger numbers (greater than 999 999 999) what is
not the case with the Babylonian numeration in which, setting a symbol for 1, 2,
. . . , 59 at one of the ends of a notation, another is obtained denoting a still bigger
number. Besides having an enormous advantage for computation, the Babylonian
numeration also suggests implicitly the potential infinity of the set of naturals. Nei-
ther in Babylon nor in Egypt, any idea of plausible arguments that might convince
one of the correctness of a procedure appeared.

1References numbered from 1 to 9 are included in the first part of this article (this Teaching,
vol. II, 1, p. 58)
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The Greek way of writing numbers, known as the Alexandrian system, uses
the letters of the alphabet extended by three extra signs (altogether 27 letters). In
this system, nine first letters of that alphabet represent nine first natural numbers,
the group of the next nine letters represents tens and the last group hundreds.

Placing a stroke before a letter, thousands, tens of thousands and hundreds
of thousands were indicated and, with two strokes and so on, still larger groups of
numbers.

Then, each number was represented as the sum of those indicated by a single
letter. Thus,

/
λη = 30 008,

/
ρσλδ = 100 234, . . .

In so far as the Greek arithmetic is reduced to the art of calculation, no sig-
nificant improvements are seen when it is compared with the Egyptian, while the
Babylonian reached a far higher level than both of them. As a matter of fact,
this art was called logistica and the classical Greek mathematicians scorned it and
they did not even considered it to be a science. Logistica was taught to children
in schools for practical purposes, whereas the word arithmetica was reserved for
theory of numbers (7th, 8th and 9th book of the Euclidean Elements).

In each of these three cultures, the practice of counting and measuring led to
the formation of an abstract idea of number reaching the extent that we call now
positive rationals. Whole numbers (and their ratios) were considered by Pythago-
ras to be the foundation of the universe. A great crisis was caused when the
Pythagorean disciples (legend says it was Hipasus of Metapontum) discovered in-
commensurable lengths (a diagonal and a side of a square).

Operating with magnitude as a universal which includes lengths, areas, vol-
umes, angles, weights and time, Eudoxus created the theory of proportions (the
Elements, 5th book) overcoming so that crises. Ratios of two incommensurable
magnitudes of the same kind carry a meaning which we now call irrational number.
Even though ratios of whole numbers were embedded in this theory as pairs of
commensurable magnitudes, lack of higher degree of abstractness kept the ideas
of the discrete and the continuous separated for a long time (until 19th century
A. D.). In spite of the fact that the Eudoxus theory was created exclusively on a
geometric basis, he is considered to be the first founder of the real number system.

The practice of measuring led man to consider ratios of whole numbers. But
only abstract conception of geometric objects, and not the practice, could lead
to the discovery of incommensurable magnitudes. In that we can see one of the
greatest achievements of the classical Greek thought. Thought not sole, this is also



84 M. M. Marjanović

the most important way of extension of the system of natural numbers existing in
the frame of mathematics.

The basic numerals in the Babylonian arithmetic are the signs denoting num-
bers 1, 2, . . . , 59. Being arrangements of only two basic signs for 1 and 10, their
denotation was easy for recongnition but, say, the sign for 59 is an arrangement
of 14 “wedges” what makes such a system of numeration extremely unpractical.
Similarly, the Egyptian 9 is an arrangement of 9 sticklike signs, their 90 such an
arrangement of 9 signs indicating 10 and so forth and so on. This unpracticalness
is another unfavourable aspect of the Egyptian numeration. Letters used in the
Greek numeration are purely conventional signs (though each stroke added means
the multiplication by 1000). They made possible an easier manipulation by forming
of written schemes and, for example, when adding the Greeks wrote numbers one
below the other in order to arrange units column, tens column etc.

The early medieval period which extends from the end of 3rd century to the
end of 11th century A. D. is the time of stagnation of mathematics in the European
civilization. As the Church extended its influence, the antique schools disappeared
and there was a complete lack of interest in the physical world as far as the ecclesi-
astical institutions are concerned. Disputing against the Skeptics, Saint Augustin
(A. D. 354–430) in his “De civitate Dei” declares his famous principle “si falor
sum”. (If I delude myself, I exist), (see, for example, [12]). Could not we also think
of this principle as expressing the essence of the medieval man, seen as a sinful
being, turned to the following of the Christian values?

During approximately the same period there was a flourishing of the Hindu
mathematics. Taking over and improving the Hindu positional notation of num-
bers, in base 10, the Arabs carried it over to Europe but more than half a millenium
passed until its general acceptance. The first such endeavour was the book “Regula
de abaco computi” written by French monk Gerbert (who became Pope Sylvester
II in 999). In meantime the Hindu-Arabic system was used by Italian merchants
in their account books, but in some cases, was also forbidden as, for example, by
the university authorities in Padova ordering that the prices of books should be
indicated “non per cifras sed per letteras claras” (not by ciphers but by clear let-
ters). It was the book of Luca Paciolli “Summa de Arithmetica”, published in 1494,
under the influence of which this system started to be widely spread in Europe.
Having only ten basic conventional signs 0, 1, . . . , 9 used in positional notation,
the Hindu-Arabic system shows all comparable advantage over each previous one.
Add also that from a latinization of the name of Arab mathematician al-Khwarizmi
(c. 780–c. 850) and by means of the Latin translation of his treatise “Algorithmi de
numero Indorum” (12th century) the word “algorithm” was derived denoting all
well-known rules of calculation performed on notations which represent numbers in
this system.

Whole numbers and their ratios have always been conceived as more abstract
entities than the ratios of magnitudes could have been. In the latter case, the
operations were not clearly determined, either and, for instance, the “product” of
two lenths was area. To illustrate all awkwardness that existed, let us cite one of
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Vieta’s cubic equations: 3BA2 −DA + A3 = Z in his own rhetoric form

B3 in A quad−D plano in A + A cubo equatur Z solido,

from which we easily see the geometric meaning of multiplication as well as that all
terms have the same dimension 3. That homogenity of measures was also a con-
dition for feasibility of addition and subtraction. Note also that even N. Tartaglia
(1500–1557) insisted on distinction between multiplying of numbers and that of
magnitudes, using multiplicare in the former and ducere in the latter case in order
to point out the difference.

René Descartes (1596–1650) is considered to be the first great modern philoso-
pher. A millenium after St. Augustine, he declared his famous principle “cogito
ergo sum” (I think therefore I exist). Could not we also think of this principle as
expressing the essence of the modern man, seen as a being which primarily uses
intellect? A relatively short appendix to his classic “Discours”, “La Geometrie” is
his only treatise on mathematics which influenced its development in many direc-
tions. Confining here our tale to the status of the number system, we lay a stress
on the Descartes’ “coordinating” of the line. (The term “coordinate” was first used
by G. Leibnitz).

For Eudoxus, proportion of two magnitudes a, b (following G. Oughtred (1574–
1660), denoted by a : b1) and that of another two c, d are in the same ratio (now
we would say are equivalent by representing the same number) if for any whole
numbers m, n, whenever

ma T nb

then
mc T nd.

To express this equivalence, the equality a : b = c : d is written.We see that
the same ratio (number) could be represented by an infinite class of distinct pairs
of equivalent proportions. It is easy to imagine how such notations, which do not
indicate numbers uniquely, had to be necessarily a clumsy tool.

Fixing a unit length and denoting it by 1, Descartes replaced each proportion
a : b by its unique equivalent of the form c : 1. Then, taking a half-line (Descartes
ignored to think of negative numbers), with the end 0, he represents the lengths 1
and c by geometric segments having one of their ends at 0.

Fig. 5
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Thus, an evident one-to-one correspondence between ratios and pairs of the
form c : 1 is established and, again, such a correspondence exists between all specific
proportions c : 1 and all lengths c. As a result, ratios are represented by segments
of a line carrying unit length and, thereby, a geometric model is created, furnished
with the meaning of, what we now call, positive real numbers.

As it also is very important to point out,this model is closed for the four
elementary algebraic operations. Though it is somewhat involved in his method
of solution of geometric problems by means of algebra, but Descartes apparently
insists on the fact that the segments representing a + b, a − b, ab and a/b are
constructible from those for a and b.

(A reader wishing to refresh his knowledge of elementary goemetry will use the
proportionality of sides of similar traingles, to construct ab and a/b.)

Fig. 6

(Construct x, according to 1 : a = b : x and b : 1 = a : x.)
As a result of this improvement, the highly inconvenient condition of homogen-

ity, still present in the writings of Vieta, was eliminated.
This geometric model influenced very much all ideas which led to the modern

conception of real number.Properties of everything, amounts of which are measur-
able, can be transposed to a scale. (Think of thermometer, steelyard, etc.). In fact
such a scale is a materialization of the coordinate line often found in real life.

Since the segments representing lengths have an end at 0 and the other deter-
mines uniquely a point on the line, then that point can also be taken as a geometric
interpretation of number.Finally, when one-to-one correspondence between the set
of points of a line and the set of infinite decimal notations was perceived, the
Eudoxus magnitudes became real numbers as we understand them now.

At the end, let us note that tendency to have the number system rid of any
specific interpretation has set up the idea of abstract set. On that idea, a logically
solid basis was formed on which the modern theory of real numbers stands (R.
Dedekind, second half of 19th century).

7.2. Natural numbers are more than a mere subset of reals. To
indicate distinct systems of numbers, we will follow traditional notation. Use N
when the numbers are natural, Q+ positive rational (plus zero), R+ positive real
(plus zero), Z integral, Q rational and R when the numbers are real. This diagram

N → Q+ → R+ → R



Themas of elementary school mathematics, II 87

represents the way how the number systems were extended during a very long
period in man’s history.

Negative numbers, as roots of algebraic equations, appeared early in history of
mathematics but they had been considered to “serve only to puzzle the whole doc-
trine of equations” and they were well understood only in modern times. Descartes
rejected them and his “quarter” of the plane could serve only to represent parts
of curves given by equations. It might be that the elimination of this deficiency
encouraged mathematicians to accept these numbers. Their geometrical interpre-
tation (together with “multiplication of signs”) depends on the idea of two opposite
orientations of geometrical objects and hence, it is difficult for schools.

Unrestricted feasibility of operations followed by the permanence of their prop-
erties is another plan according to which the extension of number systems goes in
scientific reconstructions and didactical transformations of the historical process.
One of these two ways

N → Q+ → Q → R

or
N → Z → Q → R

is usually taken, with the preference to the latter in scientific writings. In educa-
tional practice, both ways have their advocates (and me, in the role of a devil’s
advocate would say that a parallel following of historical development is inevitable
anyway, no matter if these defenders are conscious of it or not).

We see in all these cases the initial position of N, what, by itself, underlines
the fundamental importance of this system. Extending N to Q or R, which are
ordered fields, both operations subtraction and division are also feasible without
restriction with all operational properties preserved, but now we will be looking for
specific meanings of natural numbers not shared by all reals.

If a number of dots can be arranged to form a triangle, then the first Pythagore-
ans called such a number triangular. According to the shape of these arrangements

Fig. 7

triangular numbers are 1, 3, 6, 10, . . . . Similarly the numbers 1, 4, 9, 16, . . . were
called square numbers.

With 9 small square jettons, a bigger square is easily composed and the same
can be done with 16 jettons. Taking these jettons together and rearranging, a
square composed of 25 jettons is formed. The equality 9 + 16 = 25 can also be
written as 32 + 42 = 52 and such three numbers 3, 4, 5 are called a Pythagorean
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triple which is a solution in natural numbers of the equation x2 + y2 = z2. The
Pythagoreans already knew of infinitely many such triples and it was Diophantus
(3rd century A. D.) who determined them all

m2 − n2, 2mn, m2 + n2

m, n being arbitrary natural numbers (m > n).
Using a set of small dice, say m3 of them, a cube can be composed and with

plus n3 of them, another cube. But these dice cannot be recomposed so to form a
third bigger cube, whatever the numbers m and n be. This means that there exists
no triple m,n, p of natural numbers satisfying the equation x3 + y3 = z3 (a fact
proved by L. Euler in 18th century).

Many interesting problems (of arrangement and, generally, combinatorial in
character) can be exclusively formulated and solved using natural numbers. The
reader surely remembers their role in school combinatorics as well as he knows
Fundamental Theorem of Arithmetic: Each composite number has the unique prime
factorization (a fact, which would loose its meaning in Q or R).

Summarizing, we see that the system N is not only the first step in building
larger systems of numbers, but that it, by itself, has many other important uses in
mathematics. By the way, note that there exist some also important extensions of
N distinct from number systems Z, Q and R.

Addendum 4.

As it is usually known to mathematicians, the set N together with addi-
tion and multiplication extends to the transfinite systems of ordinal or cardinal
numbers in which, the natural numbers formally attain one of these two distinct
characteristics of extensions. The objects added by extension still indicate, place
in the former and potencies of sets in the latter case, but the operations loose some
of their properties, what is, for instance, seen from ω + 1 > 1 + ω, ℵ0 + ℵ0 = ℵ0,
etc.

As an additional example, take natural numbers as topological types of finite
(Hausdorff) spaces. Then, say, the set of types of compact, metric, zero dimensional
spaces, with addition and multiplication based on disjoint topological sum and
direct product respectively is another extension of N. Also here some operational
properties are lost and, for instance, there exist objects in this extension such that
X 6= Y and still X2 = Y 2.

Insisting further on exceptional role of whole numbers, let us recall that some
fundamental topological invariants as Euler characteristic, Brower’s degrees, etc.
are integers as well as that each topological property which homology groups with
coefficients in an arbitrary Abelian group register, those with integral coefficients
also do (Universal Coefficient Theorem).

Conceived either as ordinal or as cardinal, natural numbers always represent
experiences of discrete realities. On the contrary, everything considered to be a
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magnitude is continuous in nature and, when intelligibly conceived, becomes re-
duced to its gestalt—a line segment, as each procedure of measuring proves it so
evidently. But when two segments a, b are compared, the number n1 is found so
that n1b 6 a and (n1 + 1)b > a. If r1 = a − n1b > 0, then n2 is found so that
n2r1 6 b and (n2+1)r1 > b. If r2 = b−n2r1 > 0, then n3 is found so that n3r2 6 r1

and (n3 + 1)r2 > r1 and so on, this process is continued (possibly infinitely many
times if a and b are incommensurable). Thus, a fully developed concept of the ratio
of magnitudes inevitably leads to a (possibly infinite) sequence of natural numbers
(and in its most elementary case is reduced to counting of copies of unit measure).

There exists a textbook in arithmetic from a country known by high educa-
tional standards and for which I do not know if, and how widely, is accepted in the
current school practice. My interest provokes the fact that the authors of the book
evidently take the naive idea of magnitude as a starting point in developing the
number ideas. Not being ready to analyze it here in detail, I can’t help thinking of
it as a complete failure.

Following the meanings suggested by pictures, say, of bottles with some amount
of milk in each, articles of clothing of different size, etc., letters of an alphabet are
used and involved in relations as

L = K, K = B + D + ´, R− B = N− B, R > G

and so on. Then, natural numbers as ratios of magnitudes, appear and, for example,
we see them introduced this way

M
K

= 4,
M
A

= 2, . . .

Using a Piaget’s term loosely, we would say that this literal arithmetic stays
at an infralogical level. That numerical one, contained in this textbook as well as
in its continuation (the volume for the 2nd year class) is mostly left to look after
itself. But just the opposite, the operational skill, formed in numerical arithmetic
is of the primary developmental meaning, what we have to care about all the time.

Being basis and ground of all mathematics, natural numbers and operations
with them, in one word, arithmetic remains to be a principal occupation of educa-
tors. The processes of creation which happened once and under some circumstances
can be retraced anew, but their essence should not be touched by any innovation,
least of all by those ignoring historical course and structural contours of mathe-
matics proper.

7.3. Significant innovations. Education in Christian schools in the Mid-
dle Ages was oriented towards devotion to God and religion and to acquisition of
Christian wisdom. Church Fathers did suggest to educators that their work with
children should be as lively as possible and to educate them in secular matters as
well. But ecclesiastical arithmetic was reduced to the computation of dates of hol-
idays called computus and some geometry found its place in Church architecture.
Mercantile economies of Italian cities (12th and 13th century) instigated the foun-
dation of public schools with programmes subordinate to the interest of the leading
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class, while the exclusive aim of feudal lords was military and physical education.
Dogmatism and formalism were characteristic for medieval teaching methods and
overwhelming belief in inborn ideas was a widely spread doctrine.

With the Renaissance and the Reformation, new roads in education were
opened and the real subjects (arithmetic, geometry, astronomy, natural history)
gained in importance. In place of scholastic verbalism, pleadings for visual method
spread. It was John Locke (1632–1704) who said that the mind of a child in its
earliest state is tabula rasa, expressing so his belief that the senses are the source
of knowledge. The new didactical views insisted upon visual method, the relation
between things and words as well as between perception and concepts.

The best act in response to new didactical trends in 17th century was the
book of Jan Amos Komensky “Orbis sensualium pictus” which stayed to be a
paragon of visual method for a long time and the contemporary arithmetic books,
with all colourful illustrations, are an aspect of revival of Komensky’s method.
Kant’s philosophy is taken to be the climax of philosophy of the Englightenment,
characterized by rationalism, and the principle of his theory of knowledge—from
observation to conception is basic for Pestalozzi’s didacties. Pestalozzi considered
number, form and word to be fundamental elements of elementary education and he
rejected the teaching of arithmetic which does not develop a clear idea of number.

The name of Friedrich Eberhard von Rochow (1734–1805) is associated with
the important improvements in German school system. His major contribution
to the teaching of arithmetic was the splitting of the natural number system into
didactical blocks 1–10, 1–20, 1–100, . . . , what is an idea which has become generally
accepted in modern didactics.

The fact that each natural number is an individual concept and that there
exist infinitely many of them, as might be expected, the puzzling question how to
develop their meaning arises.

Pestalozzi’s requirement that each number has to be treated separately should
not be understood litterally but, as it goes without saying, the numbers within an
initial didactical block are meant. This requirement was most consistently carried
out by Pestalozzi’s follower A. W. Grube (1816–1884), who established so called
monographic method treating number by number with all four operations involved
simultaneously. As a sample, let us select a piece of his unit devoted to the num-
ber 4.

I) Measuring and comparison

a) Measuring with 1. | | | | 4.

| 1
| 1
| 1
| 1





1 + 1 + 1 + 1 = 4 (1 + 1 = 2, 2 + 1 = 3, etc.)
4× 1 = 4

4− 1− 1− 1 = 1
4 : 1 = 4
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b) Measuring with 2. c) Measuring with 3.

| | 2
| | 2





2 + 2 = 4
2× 2 = 4
4− 2 = 2
4 : 2 = 2

| | |
|





3 + 1 = 4, 1 + 3 = 4
1× 3 + 1 = 4
4− 3 = 1, 4− 1 = 3

4 : 3 = 1 (1), 3 into 4 = 1 and 1 remains

II) Quick calcuation

2× 2− 3 + 2× 1 + 1− 2 doubled!
4− 1− 1− 1 + 2 + 1− 3, how many times smaller than 1, etc.

Prior to Grube, the teaching matter of arithmetic was divided into species:
block of numbers 1–20 with four operations going one after another: addition,
subtraction, multiplication, division (1st year class), block 1–100 with the same
order of operations (2nd year class), block 1–1000 (3rd year class) and so on.

Both these methods are extreme and an optimum can be expected with their
reasonable combinations which are present in the contemporary treatments.

Not long ago there were illiterate villagers or those having finished only a four
year elementary school in many European countries. At that time, no one could
ignore crude life and needs, often of a high percent of such population either the
worth of activities, such as joinery, carpentry, dressmaking and so forth. Thus, no
wonder if the educational aims of such a school were utilitarianly oriented and often
referring to the subject matter as an autonomous whole.

Along with the improvement of social and economic conditions, elementary
education has become obligatory and has been prolonged to at least eight year
period. As a result many aspects of teaching and learning have changed and new
educational aims have been proclaimed but the range and skeleton of arithmetic
have remained unaltered since the time of great reformers.

In teaching of arithmetic as it was, the algorithms of operating with numbers
given in decimal notation were in the first plan, what often tasked a child’ s brain.
Modern approaches are primarily oriented to understanding. Now, within small
blocks, the numerical terms (sums, products, etc.) are used to represent numbers
and equalities relating them are used to express fundamental rules of arithmetic.
On that basis, the algorithms (usually postponed until the 3rd year class) become
intelligible and thus easier learned. Gained skill and knowledge of such arithmetic is
transferred to algebra in higher classes of elementary school, what is an important
objective being not present in earlier methodology of teaching.

Relics from previous generations of teachers still exist. For example, writing
about the dilemma vertical or horizontal form, an author of a book on methodology
of teaching arithmetic says: “People, in adding, ordinarily write the numbers in
vertical form”.

Deciding in favour of the vertical form, he says that it is “the one commonly
used in the community”. When we think of children in school of today how they
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write sums of fractions and proceed to operate with algebraic terms for years we
easily see how much out of date are such arguments. Vertical form comes with and
is bound to algorithm of adding of numbers in decimal notation when columns of
units, tens, hundreds etc. are arranged.

So it is somewhat sad to see

2
− 1

1

written and its blundering reproduction in drawing

• •
− •
•

given, and all done as “a proper basis for effective learning”.

8. Didactical blocks of numbers

In the majority of approaches, the study of numbers is seen to be divided into
classical didactical blocks 1–10, 1–20, 1–100, etc. and when it is not so, we readily
think of some zealous innovations being quite out of the way. Revealing exactly
what a block contains in the way of teaching steps, grouping of facts and distri-
bution of practice, a foundation for its existence as a set of connected didactical
units is established. We leave to expose such details for each block separately.
By and large, the initial blocks consist of those numbers which have to be mas-
tered thoroughly, establishing all relations among them, expressed by means of four
arithmetic operations being contained in corresponding tables.

8.1. Block 1–10. This block consists of the first ten natural numbers plus
zero and with the exception of 10, each being one digit and these digits also being
the whole set of basic decimal symbols. Further, two operations begin here, the
addition and the subtraction, what by equating of sums and differences with their
values written in decimal notation introduces the equality relation. Comparing
numbers, the order relation (bigger than, smaller than) appears as well. In all, this
block is a quite complex conceptual structure

(N10, +,−,=, <)

which is made up of eleven numbers, each being an individual concept, of two
operations and two relations, what means four extra concepts each requiring a
great effort to form its proper meaning. When we count, we find here fifteen signs,
or half of an alphabet, what could be too much for the unsteady hand of a child.
That is why we suggest here going at an easy pace and, first, acquiring of the
numbers 1–5. Forbearing to speak about a still smaller block in this case is a sign
of our dislike for novelties.
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Quantity of elements of small sets is recognized at once or found easily by
quick short counting. As being at the sensory level, sets that the child deals with
are perceptual entities and, by this means, numbers and operations are as well.
Discovering numbers and finding sums and differences with components and results
not exceeding 5, the child does it by observing or quick counting, usually having no
problem of that kind. Thus, his/her attention should be focused on meaning and
its correct codification in the form of arithmetic symbolism. That is the reason we
suggest mastering the numbers 1–5 as the first steps.

We take here meaning of the word “lesson” to be amount of teaching given
per school hour. For each of the first five numbers 1, 2, 3, 4 and 5, five separate
lessons should be organized according to the orbis pictus model. In that way, the
teacher starts out to create them as full concepts and for that, the mere process of
counting is insufficient.

Lesson “one 1” should start with pictures representing, say, one boy, one house,
one bird etc. Stimulating pupils, the teacher lets them describe what they see.
Then, the children use the word “one” followed by the name of objects of their
observation. Below each picture a space holder stands where the children write the
sign “1”, without any naming.

Thus, this sign is used for denotation of an abstract concept and not for its
corresponding examples. Let us use a diagram to illustrate all such examples.

Fig. 8

In ordinary speech, the question “How many” is used when one refers to the
situations where two or more things are seen and, in arithmetic, it should be inten-
tionally used in the case of numbers 0 and 1. So this is a moment when the teacher
asks questions as “How many boys are seen” and the children answer “one” (“just
one”) , etc.

Children also have to practice correct writting of the figure 1, moving the hand
as arrows indicate it:

↗1 ↓

Of course, here we give only an outline of the lesson and thereby we leave out
details which would model it completely.

Lesson “two 2” should begin with the pictures representing natural twos. Such
are team of two horses, a pair of gloves, shoes, skis etc. Again, space holders are
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Fig. 9

attached to these pictures, where children write figure 2. Diagramically, it looks
like

Of course, the practise of writing the symbol

y

2
→

takes also some time.

Similarly, the lessons “three 3”, “four 4” and “five 5” are done. To preconceive
addition, number pictures as

Fig. 10

should also be used in pictorial environment.

As we know it from history of mathematics, it was Robert Record (1510–1558)
who, in his book “Whetstone of Witte”, introduced the equality sign “=” and where
he says “noe 2 thynges can be moare equalle” (thinking of the two dashes). Thomas
Harriot (1560–1621) introduced two inequality signs, usually interpreted as at one
of the ends “pinched” equality sign which opens towards the bigger number.

Some children have a problem to distinguish these two signs. To help them,
the drawings as in Fig. 11 could be employed, what is better than possible verbal
instruction of the teacher.
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2 < 4 3 > 2
Fig. 11

8.1.1. Patterns of letters designed for handwriting usally have line endings
which serve to join them in groups traced by a single continuous move of the hand.
On the contrary, figures are separted symbols written in one or more moves each of
which traces an arc (with possibly coinciding end points). At the last end point of
an arc the movement of the hand stops in order to have direction changed (corner
points) or to have the tip of pencil placed at another point (points of discontinuity
of writting). Thus, the figure “5” is traced in three moves

and, in this example and all others, arcs are written starting to move hand from
top downwards or, in the case of horizontal arcs, from left to right.

To establish this manner of writing figures, some teachers use big copies (the
size of a page) and let children move their hands in the order and direction indicated
by arrows. They also claim that it helps their pupils easily overcome some initial
difficulties in writing figures.

When we are ready to accept such a claim, we have in mind that more intensive
motor acts are likely to be easier represented inactively and that training an activity,
the responses also tend to a regular form.

8.1.2. Since the zero is a specific number, it deserves some extra attention.
The symbol “0” appears in Greek papyri from the Alexandrian period to indicate
missing numbers and it is generally supposed to be the initial letter of the Greek
word “ouden” which means “nothing”. But the use of this symbol in decimal
notation does not necessarily mean the inclusion of the zero into the system of
natural numbers. In the developing of meaning of zero as a number, some difficulty
consists in the right comprehension of the empty set and is also caused by the fact
that the zero does not come into existence naturally, as a result of forward counting.

To form the first idea of this number, the child has to be in contact with
situations where some elements have been existing and they are now absent or they
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still exist, but at the places on which the attention is not focused. Hence an idea of
backward counting may be well exploited to instigate the activities through which
zero becomes a number indicating the empty place (a materialization of the empty
set).

Fig. 12

As an example, we can use a picture of a series of trays, successively having
four, three, two, one and none cake on them. The simplified drawings in Fig. 12
illustrate it and we suppose that the children have already been trained to fill in
the blanc places writing 4, 3, 2, 1. If followed by a teacher’s story, the children
reactions to the case of the last tray might be “all cakes eaten”, “none cake left”,
“nothing left”, “there is nothing”, “there is none”, etc. Now the teacher accepts
such their reactions with approval and saying that even in this case a number is
written, he/she fills in the left blanc place using the symbol “0” and explaining
that we read it as “zero”.

Asking how many cakes here, and here, . . . , the teacher moves his pointing
finger from tray to tray guiding so his/her pupils count backwards: 4, 3, 2, 1, 0.

With the help of similar examples the zero starts to gather some meaning and,
later when it is involved in calculation as a component of sums and differences, it
slowly becomes a number as any other.

Here I expose the way how this topic is treated in the current school practice
in my country and I have never met a teacher reporting any difficulties the children
have with the acquiring of this concept.

Addendum 5.

In set theory, the existence of the empty set ∅ is postulated and if x is any
object, then

x /∈ ∅.

It is also postulated that there is only one empty set.

But it does not seem rational to relate the concept of empty set with the idea
of an “absolute nothing”. As there exists only one cardinal number “2” and many
its different materializations : two cakes on a tray, two birds in a cage, etc., in the
same way, there exists only one empty set and many its different materializations:
a tray with no cake on it (when cakes are counted), a cage with no bird in it (when
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birds are counted), etc. Of course, if we count trays or cages, then such examples
does not materialize the empty set any longer.

Syntactic sign of the empty set is “∅” and a pictorial one is seen as an “empty”
rectangle in Fig. 12. When a closed curve that holds things together is used in
pictorial representation of sets, then the empty set is represented by such a curve
alone. As it goes without saying, only pictorial representation of the empty set is
present at this stage.

8.1.3. In the same way as the concept of set precedes that of number, the
idea of a set partitioned into two disjoint subsets goes before the addition and the
subtraction. At the sensory level, this means a collection of objects in natural
environment obviously partitioned by their grouping at two distinct places or by
an easily observable difference which separates them into two groups. Information
about cardinality of two of these sets is given (say, obtained by counting or com-
municateted in words) and then, the cardinality of the third set is to be found. We
will call such a real world situation or its pictorial representation, or else, mental
representation associated with an information given in words, scheme (situation)
at which we react adding or subtracting. This step stresses the dependance of an
operation on natural surroundings.

In the case of addition, the cardinality of two subsets is given and in the case
of subtraction, the cardinality of the set and of one of its subsets is given. Thus,
the first step in performing one of these operations is

(I) comprehension of scheme.
The step to follow is

(II) composition of numerical expression,
(sum in the case of addition and difference in the case of subtraction).

Finally, the third step is
(III) calculation of numerical value of the expression,
what means a process of equating which leads to decimal notation of that value.

Now we describe a graphical representation of this scheme which results from
many real world situations or from their orbis pictus representations. When planed
to be materialized as an item of didactical apparatus, the scheme might be a paper
box or a plate, each divided by a thin wall (or line) and with the labelled tags
notifying cardinality.

Perceptually, it also represents very well the idea of two distinct places which
was so often verbally expressed by traditional teachers. With A and B denoting
sets, the graphical scheme in Fig. 13 is associated with addition when m and n are
given and subtraction when s and m or s and r are given.

Writing m + n in the former and s−m or s− n in the latter case, we perform
the second step.

If m, n and s stand for decimal notations of corresponding numbers, then, in
the third step, the equalities m + n = s, s−m = n and s− n = m are written and
the numbers s, n and m are then the results of calculation.
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Fig. 13

This general exposition describes and emphasizes the role of a scheme (in
mental imagery or as a graphical realization), but the real teaching starts, of course,
with simple examples.

Example 1. Two boys are seen on a lawn. Another two are coming.
The teacher schedules a performing following the general plan.
How many boys are there on the lawn: 2.
How many are coming: 2.
Now the teacher says that altogether we see two plus two boys and he/she

writes on the blackboard
2 + 2

reading it as “two plus two”. Asking: How many is it: 4, the teacher uses the
equality sign for the first time and he/she writes

2 + 2 = 4

reading this relation: “two plus two equals four”.
After having done in this way a couple of similar examples, the teacher lets

the children do exercises of this type

Fig. 14

varying the number of elements and their nature (going from more realistic illus-
trations to graphical schemes).

While the pictures reflect the structure of the scheme, the usage of space hold-
ers leads the child to compose sums and to equate them with the right results. This
equating is a special manner of expressing the principle of invariance of number:
the same number is obtained when a set is seen in groups, and, say, when we react
writing 3 + 2, and when we see it as a whole, and we write 5 instead. A deliberate
usage of space holders is very effective at this stage of teaching and we will write
about it later, in the form of a separate topic. Note also that this practice of writing



Themas of elementary school mathematics, II 99

sums and equalities is easily rooted and the children usually have no problem to do
it, even when they are no longer helped by space holders.

Example 2. Two boys are seen on the lawn. Another two are seen to be
running away. Now the teacher performs the start in subtraction.

How many boys were there on the lawn: 4.
How many are leaving: 2.
Now the teacher says that the four boys were on the lawn and that now, there

are minus two.
Writing on the blackboard the expression

4− 2

and reading it as, “four minus two”, he/she asks the children how many it is: 2.
Then the equality

4− 2 = 2

is written and properly read.
In case of subtraction a graphical scheme, for example, this one

Fig. 15

could be more appropriate for the beginning (five glaces − two empty, five pears −
two eaten up, etc.)

There is a large variety of different verbs suggesting addition and subtraction.
Those having their meaning within the child’s experience should be used in com-
position of simple word problems, what connects the symbolic codes of arithmetic
with the surrounding reality. But when helping the child, the teacher does it best
by drawing a corresponding graphical scheme not changing much its form going
from a problem to another. Thus, he/she lets the underlying abstraction develop
the way which is less hindered by unnecessary noise.

In this frame of the first five numbers plus zero, no efforts to stimulate prac-
tice of formal addition and subtraction should be planed and done. Nevertheless,
through the lessons devoted to these two operation, all possible relations m+n = s
and s −m = n, where m, n, s belong to the set {0, 1, 2, 3, 4, 5} should be included
in the form of exercises.

The Chapter 2 of Skemp’s book [6] is an excellent exposition on schemata and
advantage of schematic learning. Let us cite a passage from it.

“When learning schematically—which, in the present contest, is to
say intelligently—we are not only learning much more efficiently what we
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are currently engaged in; we are preparing a mental tool for applying the
same approach to future learning tasks in that field.”

The contents of this point are evidently devoted to schematic learning of ad-
dition and subtraction with the accent on the systematic use of a graphical scheme
which serves as a significant sign (Section 4 of this paper).

8.1.4. The range of number 0–5 extends on the basis of addition, using the
sums whose summands stay within this range and the values exceed 5. Thus, the
lesson “ six 6” should start with the sum 5+1 which has already gained a meaning
through the earlier performed activities. Now, a good move from the side of teacher
would be to draw the addition scheme and to ask children to fill in it with circlets
to represent the sum 5 + 1. Induced by previous activities and knowing to count
(up to 10), the children guess easily that 5 + 1 is six. Then, the teacher writes

5 + 1 = 6
using now a new symbol “6” and letting children have a drill on writing it. (For-
mally, a mathematician could say “6 is, by definition, 5 + 1”.)

In a similar way, the lessons devoted to numbers 7, 8, 9 and 10 start with 6+1,
7 + 1, 8 + 1 and 9 + 1, respectively.

In the course of these lessons all relations m + n = s and s−m = n have also
to be covered in the form of exercises which should be supported by convenient
iconic representations. Leaving out full details of that kind, we will cover shortly
main steps, referring the reader to our paper “Schematic learning of the addition
and multiplication tables—sticks as concrete manipulatives”, this Teaching, vol. I,
pp. 31–51.

Besides the “defining” sums 6 + 1, . . . , 9 + 1 the following ones 5 + 1, 5 +
2, . . . , 5 + 5 are also easy to children. Those which “cross the five line” are
considered to be more difficult. Therefore, they have to be accompanied with
suitable illustrations. Instead of using colours, due to technical reasons, continuous
and dotted line segments are drawn in Fig. 16 to form the arrangements representing
such sums.

Fig. 16

To calculate, say, 4 + 3 the children proceed as follows
4 + 3 = 4 + 1 + 2 = 5 + 2 = 7,

completing first five and then finding an easy sum 5 + 2. When let to do it orally,
the children, leaned upon the above pictures, do it easily.
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8.1.5. In the course of this block, the meaning of some words belonging to the
arithmetic vocabulary have also to be established. Using some examples, say,

3 + 2

the teacher notifies “3” as first summand, “2” as second summand and the whole
expression as sum. By means of programmed exercises he/she also controls the
assimilation of their meaning. To bring to completeness this block, two properties
of addition have to be covered as well. In the way that it is easier to count up to
9, beginning at 6 than at 3, in the same way, taken as an action, it is easier for the
child to find 6 + 3 than 3 + 6. Thus, the rule of interchange of summands (said
formally, commutative law) has to be established.

A related practice found in some text-books must be criticized. Namely, some
authors take a number of examples, where they calculate a sum and the inter-
changed one finding the same result and then, on that basis, they “derive” com-
mutativity of addition, stating it in words or symbolically. It is easy to find fault
with it. First, they use the so called principle of incomplete induction as a basis for
conclusion and second, when calculating they often use the rules which they intend
to derive.

A good teacher knows that fundamental rules (principles) are not to be proved
but accepted and he/she leads his/her class that way.

For instance, starting with a set in picture-form consisting of blue and red
flowers, the teacher directs these questions to his/her class:

How many blue: 4. How many red: 3 .
How many altogether: 4 + 3.
Then, the teacher interchanges the questions:
How many red: 3. How many blue: 4.
How many altogether: 3 + 4.
Saying that in both cases we have found the some number of flowers, writing

once 4 + 3 and then 3 + 4, he/she writes the equality

4 + 3 = 3 + 4.

Let us notice that this equality is established without counting (or calculating),
as well that the chosen set stands still all the time and that the procedure does not
evidently depend on the number of flowers.

In this and all other similar examples, the rule of interchange of summands
is expressed procedurally. Its rhetorical form would be: the summands may be
interchanged without altering the sum.

At a later time, when more cases can be included, we shall write about rules
of arithmetic and the ways of their expression, setting it down as a separate topic
and providing much more details.

When this block is extended, the sums as, for example, “7 + 5” are found in
this way

7 + 5 = 7 + 3 + 2 = 10 + 2 = 12
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and we see that the three member sums are involved and that the rule of association
of summands acts as well. Since the meaning of the sum of two numbers does not
include that of longer sums, first we have to make meaningful such summation.

In the examples that follow, we use pictures of coloured jettons having different
shape. We also shorten the accompanying teacher’s questions.

Fig. 17

white: 2 + 3, black: 4; altogether: (2 + 3) + 4.
round: 2, triangular: 3 + 4; altogether: 2 + (3 + 4).

Saying also here that in both cases we have found the same number of jettons,
the teacher writes the equality

(2 + 3) + 4 = 2 + (3 + 4).

Using another picture

Fig. 18

and directing the same questions, the teacher establishes the equality

(2 + 4) + 3 = (2 + 3) + 4,

etc. After having done a number of similar examples, the teacher expresses the rule
of association of summands rhetorically: the summands may be associated freely
without altering the sum.

8.1.6. Ad notam. In this paragraph, as well as earlier, we often use a lan-
guage which does not describe ready-made products of arithmetic but the activities
through which they are synthesized. Also, when we say “the teacher leads his/her
class”, “the teacher directs question to his/her class”, etc., we assign a thing which
has to be done by him/her and, of course, it does not mean we are so pleading for
the frontal method. In fact, we do not treat purely pedagogical questions in any
part of this paper.
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As it is easily seen, longer sums and the rule of association of summands
are treated here in a synthetic rather than analytic way when, in the latter case,
addition is considered to be a binary operation and the sums of more than two
summands are defined inductively. In the present form, the rule of association is
suitable for use by children. Logically, it appears as a combination of commutative
and associative laws, but at this early stage of arithmetic teaching we do not expect
children to deduce formally.

The usage of brackets may also be postponed and then, the summation should
go in the order the summands are written.

A number of examples used for illustration of these rules serve to practise
the procedure. Mental picturing and establishing of equality present in the case
of special numbers would be just the same in general, what means in the case of
any others. Hence, it is in no way an instance of incomplete induction, but the
formation of an intuitive basis upon which these rules are acceptable.

Activities through which the touch with addition and subtraction scheme be-
gins should start with the lessons devoted to the counting drill and the usage of
words “set”, “element” (and of their natural equivalents). A usual place for sym-
bolic coding of these two operations is after the lesson “three 3”. The reason for
it could be the maintained opinion that the children see the number of objects at
once, when it does not go beyond three.
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