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SUBSTITUTIONS IN DIFFERENTIAL EQUATIONS
AS A GEOMETRY OF THEIR SYMMETRIES

Jelena Katić

Abstract. We enlighten a geometrical background for familiar substitutions in
certain ordinary differential equations. We explain how the existence of a symmetry of
a differential equation provides a change of coordinates (i.e., a substitution) in which
the initial equation becomes in quadrature form.
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1. Introduction

The simplest differential equation is one of the form

dx

dt
= h(t), x(t0) = x0,

where h : I → R is a continuous function defined on an interval I ⊆ R. Its only
solution is obtained by a direct integration:

x(t) = x0 +
∫ t

t0

h(τ) dτ.

The next very simple form is

(1)
dx

dt
= h(x), x(t0) = x0,

where h(x0) 6= 0. It follows from the assumptions that x(t) has the differentiable
inverse in some neighbourhood of x0, so we can transform (1) into

dt

dx
=

1
dx
dt

=
1

h(x)
, t(x0) = t0,

which is again solvable by integrating.
We accept the following definition.

This work is partially supported by Ministry of Education and Science of Republic of Serbia,
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Definition 1. An ordinary differential equation is in quadrature form if it is
of the first order,

(2)
dx

dt
= f(t, x)

and if the right-hand side, i.e. the function f(t, x), depends only on t or on x.

It is convenient to transform any differential equation dx
dt = f(t, x) to the one

in quadrature form; in some examples this can be done by a suitable choice of new
variables, i.e. by a substitution. In this note we will try to lighten the background
of certain substitutions from a geometrical point of view, i.e. to explain how some
substitutions naturally arise from a symmetry of a differential equation.

Let us recall some examples first.
Example 2. (Homogeneous equation) Consider the equation

dx

dt
= g

(x

t

)
.

Using the substitution
s(t, x) = log t, y(t, x) =

x

t

one transforms it to quadrature form. The substitution s(t, x) = t, y(t, x) = x
t

transforms it to the equations with separable variables:

dx

dt
= a(x)b(t).

Example 3. (Generalized homogeneous equation) It is an equation of
the form

dx

dt
=

x

t
g

(
xα

tβ

)
.

The substitution
s(t, x) = log t, y(t, x) =

xα

tβ

transforms it to quadrature form and the substitution

s(t, x) = t, y(t, x) =
x

t

transforms it to the equations with separable variables.

Example 4. (Linear equation) The equation

(3)
dx

dt
= p(t)x(t) + q(t)

can be transformed into the one in quadrature form using the substitution

s = t, y = xe−
∫

p(t) dt.
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2. Substitutions

Let us first precise some terminology. Let U be a domain (a connected open
subset of Rn or of a manifold M) and let F = F (t, x) be a vector field defined on
U which may also depend on t ∈ I ⊆ R, meaning

F : I × U → TM, F (t, x) ∈ TxM, for all x ∈ U , t ∈ I.

If M = Rn we have the identification TxM ∼= Rn, so

F : I × U → Rn.

Consider the differential equation

(4)
dx

dt
= F (t, x(t)).

We have the following notions:
• the domain U is called the phase space of the equation (4)
• the product I × U is called the extended phase space of the equation (4)
• the image of any solution x : I → U of the equation (4) is called the phase

curve of the equation (4).
A substitution in the autonomous differential equation

(5)
dx

dt
= F (x(t))

on a domain U is a change of local coordinates, i.e. a diffeomorphism defined on U
which hopefully simplifies the form of (5). More precisely, let

φ : U → V
be a diffeomorphism between domains U and V. Let φ∗F denotes the push-forward
of F by φ:

φ∗F (y) := dφφ−1(y)(F (φ−1(y)),

where dφφ−1(y) denotes the derivative of φ at the point φ−1(y).

Proposition 5. The diffeomorphism φ maps the phase curves of the equa-
tion (5) to the phase curves of the equation

dy

dt
= φ∗F (y(t)).

Proof. By differentiation we check that y(t) := φ(x(t)) is a phase curve of a
vector field φ∗F .

Let us now consider the non-autonomous case (4). The most important non-
autonomous equation that we study in this note is the following simple equation:

(6)
dx

dt
= f(t, x),
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where f is a function of two variables defined at some domain in R2. It is often
more elegant to study a non-autonomous case as an autonomous equation in the
extended phase space. This means that we treat (t, x) ∈ I×U as a new function of
τ and instead of the equation (4) we consider the following autonomous equation
in the extended phase space:

(7)





dt

dτ
= g(t, x)

dx

dτ
=

dx

dt

dt

dτ
= F (t, x) · g(t, x),

for a suitable choice of g(t, x) (desirably of a constant sign, so that τ 7→ t is a
bijection).

The simplest example of making an autonomous equation out of the non-
autonomous one is the choice g(t, x) = 1; now (4) can also be written as

dx̃

dτ
= F̃ (x̃), where x̃ = (t, x) ∈ I × U , F̃ (x̃) := (1, F (x̃)).

The solutions of the equation (4) are the projections of the solutions of the
equation (7) to the phase space U .

The substitution is now a diffeomorphism

φ : I × U → J × V,

where U ,V ⊆ M (or Rn) and I, J ⊆ R.

3. Symmetries

Definition 6. Let F be a vector field on a domain U . We say that a diffeo-
morphism ϕ : U → U is a symmetry of the differential equation (5) if ϕ∗F = F .
In the non-autonomous case (4) a symmetry is a diffeomorphism of the extended
phase space I × U which is a symmetry for the autonomous equation (7).

Remark 7. In the non-autonomous case (4), the symmetry ϕ : I×U → I×U
is a notion that depends on the choice of the function g in (7).

Proposition 8. The symmetry ϕ of the autonomous system (5) maps the
phase curves of given system to the phase curves of the same system. The same is
true for the non-autonomous system (4).

Proof. The assertion for (5) follows directly from Proposition 5.

Regarding the system (4), from the autonomous case we conclude that ϕ :
I × U → I × U maps the phase curves of the extended system (7) to themselves.
The phase curves of the initial system are solutions of (4). Since

ϕ∗(g(t, x), F (t, x) · g(t, x)) = (g(t, x), F (t, x) · g(t, x)),
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we see that the projections of the phase curves are solutions to

dx

dτ
= F (t, x) · g(t, x).

But this is the reparametrized curve dx
dt = F (t, x), since dt

dτ = g(t, x).

Definition 9. Let ϕε be a symmetry of the equation (5) for every ε ∈
(−ε0, ε0). We say that ϕε is a one-parameter local Lie group if the following holds:
• ϕ0 is the identity map
• ϕs ◦ ϕt = ϕs+t

• for every x ∈ U , the map ε 7→ ϕε(x) is smooth.

If ϕε is defined for all ε ∈ R so that the above conditions holds, we have the
action of the Lie group (R, +) on U . Recall that the action of the group (G, ◦) on
a set U is a mapping

G× U → U , (g, x) 7→ g · x
such that

e · x = x, f · (g · x) = (f ◦ g) · x
(where e is the neutral in G and ◦ is the group operation). Recall also that the
orbit of a point x ∈ U is defined as the set

G · x := {g · x | g ∈ G}.

Example 10. The one-parameter Lie group ϕε : R→ R defined as

ϕε : (t, x) 7→ (t, x + ε)

is a symmetry for the non-autonomous equation in quadrature form

dx

dt
= f(t).

Remark 11. Example 10 is very simple, actually, one does not need to notice
any symmetry in order to solve an equation which is in quadrature form. However,
this simple example is important since it notices a symmetry that an equation in
quadrature form possesses – namely the symmetry with respect to the translation
along x-axis.1 The orbits of this action are vertical lines in the plane. The purpose
of this paper is to show how to find a substitution which transforms the orbits
of a given (more complex) symmetry (of a more complex differential equation)
to the straight lines (vertical or horizontal ones), and thus transforms the more
complicated equation to the simple equation in Example 10. We will come back to
this later, in Proposition 16 and Theorem 17.

The following example illustrates the previous remark.

1On the other hand, the one-parameter Lie group ϕε : (t, x) → (t + ε, x) is a symmetry for

the equation dx
dt

= f(x).
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Example 12. (Homogeneous linear equation) The equation2

(8)
dx

dt
= p(t) · x, x(0) = x0 > 0

is invariant with respect to the homothety

x 7→ λx.

Of course, it is solvable as an equation with separated variables. The equation

dx

x
= p(t)dt

is easy to solve, since the left side is the derivative of the function y(t) = log x(t).
The appearance of the logarithm here is not coincidental, from symmetries point
of view, since:

log : (R+, ·, 1) → (R, +, 0)

is a group homomorphism, so it transforms the action of the group of homotheties to
the action of the group of translations from Example 10. Therefore the substitution
y = log x transforms the equation (8) to the equation of Example 10, i.e. to the one
in quadrature form. This is also done with two different substitutions in Example 2
and Example 3. We will see later that this is actually a method.

Example 13. Let f(t, x) be homogeneous function:

f(eεt, eεx) = f(t, x).

Then the one-parameter Lie group ϕε : R→ R:

ϕε : (t, x) → (eεt, eεx)

is a symmetry for the autonomous system

(9)





dt

dτ
= t

dx

dτ
= tf(t, x)

which is an extension (in sense of (7)) of the non-autonomous equation

dx

dt
= f(t, x).

This example is a generalization of Example 12.
Example 14. Let f(t, x) be a quasi-homogeneous function:

f(eαεt, eβεx) = e(β−α)εf(t, x).

Then the one-parameter Lie group

ϕε : (t, x) → (eαεt, eβεx)

is a symmetry for the the autonomous system (9).

2The assumption x0 > 0 does not diminish the generality.
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Example 15. The one-parameter Lie group

ϕε : (t, x) 7→
(
t, x + εe

∫
p(t) dt

)

is a symmetry for the system




dt

dτ
= 1

dx

dτ
= p(t)x + q(t).

This is an extended system of the linear equation from Example 4.

Proposiiton 16. Let f be a continuous function of two variables defined
at some domain in R2. If there exists an one parameter local Lie group ϕε of
symmetries of the equation (6) and a local diffeomorphism φ (defined on some
neighbourhood of (t0, x0)) such that

φ ◦ ϕε ◦ φ−1 : (y, s) 7→ (y + ε, s),

then φ transforms (6) into quadrature form.

Proof. Denote the new coordinates by (s, y) := φ(t, x) and

ψε := φ ◦ ϕε ◦ φ−1.

We have
ψε : (s, y) 7→ (s, y + ε).

Let f̃ = (g, fg) be a vector field on R2 such that

(ϕε)∗f̃ = f̃

(which exists by the definition of a symmetry). Note that ψε is a symmetry for
vector field g̃ := φ∗f̃ , since

(ψε)∗g̃ = φ∗(ϕε)∗φ−1
∗ φ∗f̃ = φ∗(ϕε)∗f̃ = φ∗f̃ = g̃.

But since dψε = Id, and ψε is a symmetry for g̃, we have g(s, y + ε) = g(s, y), for
every ε ∈ (−ε0, ε0). Therefore, in some neighbourhood of (s0, y0) = φ(t0, x0), the
function g does not depend on y, meaning that in the new coordinates (s, y) the
equation (6) is in quadrature form.

Theorem 17. Let ϕε be a symmetry of (6) such that dϕε

dε

∣∣
ε=0

(t0, x0) 6= 0.
Then there is a change of coordinates defined in a neighbourhood of (t0, x0) that
transforms (6) into a quadrature form.

Proof. By Proposition 16, we need to find the diffeomorphism φ with

φ ◦ ϕε ◦ φ−1 : (t, x) 7→ (t, x + ε).
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This is equivalent to the condition

φ∗

(
∂ϕε

∂ε

)
=

∂

∂x
.

The rest of the proof is similar to the proof of the Rectification theorem (see [1] for
the proof of the Rectification theorem).

We can assume that (t0, x0) = (0, 0) and

(10)
∂ϕε

∂ε

∣∣∣∣
ε=0

(t0, x0) =
∂

∂x
.

Indeed, if this is not a case, we can apply a simple affine change of coordinates (this
is always possible since the condition (10) concerns the vector field ∂ϕε

∂ε only at one
point, so this is just a transformation that sends one given vector to another one).
Consider a smooth mapping ψ defined in some neighbourhood of (0, 0) in R2:

ψ : (t, x) 7→ ϕx(t, 0).

Since ϕ0 = Id, we have ψ|{x=0} = Id{x=0}, therefore

∂ψ

∂t
(0, 0) = dψ(0,0)

(
∂

∂t

)
=

∂

∂t
.

Since
∂ψ

∂x
(0, 0) =

∂ϕx

∂x

∣∣∣∣
x=0

(0, 0) =
∂

∂x
,

we have
dψ(0, 0) = Id .

By the Inverse function theorem there exists a neighbourhood U of (t0, x0) and V
of ψ(t0, x0) such that

ψ|U : U → V
is a diffeomorphism. By the construction of ψ we have

ψ∗

(
∂

∂x

)
=

∂ψ

∂x
=

∂ϕε

∂ε
.

Therefore, if we denote by φ := ψ−1, we have

φ∗

(
∂ϕε

∂ε

)
=

∂

∂x
.

Remark 18. Theorem 17 assures that (under the given assumptions) one can
always transform the equation (6) to the one in quadrature form, without providing
an explicit way of doing it. However, by analysing the proof of Theorem 17 we can
also recover a method.
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Note that we choose a new coordinate y to be an orbit of the symmetry ϕε,
by transforming the vector field ∂ϕε

∂ε into ∂
∂y . In order to make an orbit of ϕε be

the coordinate line s = const, i.e.

(11) s(ϕε(t, x)) = const.

we differentiate (11) with respect to ε and obtain that the function s satisfies

(12) ∇s(t, x) · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 0.

On the other hand, we want to have new coordinates such that

(13) y(ϕε(t, x)) = y0 + ε

(since the symmetry in the new coordinates has the form (s, y) 7→ (s, y + ε)). By
differentiating (13) with respect to ε we get

(14) ∇y(t, x) · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 1.

Remark 19. The existence of a symmetry in a differential equation also leads
to the existence and uniqueness of its solution, without the assumptions from Picard
or Peano theorem. Namely, the equation in quadrature form (with a given initial
condition) has a unique solution defined on an interval, whenever the function (6)
is integrable, and not necessarily Lipschitz or continuous.

Note that the Lipschitz condition from Picard theorem or continuity condi-
tion from Peano theorem are analytical by nature, while the symmetry existence
assumption is either algebraic (if we consider F in the equation (4) as an algebraic
term that possesses a symmetry - see also Example 12) or geometric (if we consider
F as a vector field which is invariant with respect to a Lie group action - as in
Theorem 17). This is the illustration of three points of view on the problem of
solvability of a differential equation.

Example 20. Let us provide the substitution for a homogeneous equation
(Example 2) using the previous method. The one-parameter Lie group of symme-
tries of the extended equation (see Example 13) is given by

ϕε : (t, x) 7→ (eεt, eεx),

so
∂ϕε

∂ε

∣∣∣∣
ε=0

(t, x) = (t, x).

Hence we are looking for the new coordinates (s, y) such that

∇s(t, x) · (t, x) = 0, ∇y(t, x) · (t, x) = 1.

We see that the substitution

s =
x

t
, y = log t
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satisfies the above condition, since

∂s

∂t
· t +

∂s

∂x
· x = − x

t2
· t +

1
t
· x = 0,

∂y

∂t
· t +

∂y

∂x
· x =

1
t
· t + 0 · x = 1.

In Example 2 we exchanged the roles of s and y to have the usual substitution.3

Remark 21. The condition (12) ensures that s is constant along the orbits
of ϕε, implying that ϕε acts only on y. The condition (14) provides that ϕε is a
translation along y-direction. We can replace the condition (14) by the condition:

(15) ∇y(t, x) · ∂ϕε

∂ε

∣∣∣∣
ε=0

6= 0

and still obtain local coordinates (by the Inverse function theorem). By a suitable
choice of a new coordinate ỹ = α(y) we can obtain

∇ỹ · ∂ϕε

∂ε

∣∣∣∣
ε=0

= α′(y)∇y · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 1,

so in the coordinates (s, ỹ) we can obtain the equation in quadrature form:

dỹ

ds
= β(s).

But this is equivalent to the equation

dy

ds
=

β(s)
α′(y)

which is an equation with separated variables. This is sometimes more convenient.
This is how the substitution

s(t, x) =
x

t
, y(t, x) = t

in Example 2 transforms the homogeneous equation to the one with separated
variables.

Example 22. Let us derive the substitution in a generalized homogeneous
equation (Example 3) using the symmetry from Example 14. Namely,

∂ϕε

∂ε

∣∣∣∣
ε=0

= (αt, βx)

and the substitution
s(t, x) =

xα

tβ
, y(t, x) =

1
α

log t

3Of course in both cases we obtain the quadrature form; the only difference is whether h(t, x)
in (2) depends on t or on x.
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satisfies the conditions (12), (14), hence transforms the initial equation to quadra-
ture form.4 Indeed:

∂s

∂t
· αt +

∂s

∂x
· βx = −β

xα

tβ+1
· αt + α

xα−1

tβ
· βx = 0,

∂y

∂t
· αt +

∂y

∂x
· βx =

1
αt
· αt + 0 · βx = 1.

On the other hand, the substitution

s(t, x) =
xα

tβ
, y(t, x) = t

satisfies the conditions (12), (15), hence transforms it to the one with separated
variables.

Example 23. The substitution in a linear equation (see Example 4) can be
derived from the symmetry from Example 15:

∂ϕε

∂ε

∣∣∣∣
ε=0

=
(
0, e

∫
p(t) dt

)
.

If we set
s(t, x) = t, y(t, x) = xe−

∫
p(t) dt,

we have that s and y satisfy (12) and (14) since:

∂s

∂t
· 0 +

∂s

∂x
· e

∫
p(t) dt = 1 · 0 + 0 · e

∫
p(t) dt = 0,

∂y

∂t
· 0 +

∂y

∂x
· e

∫
p(t) dt = −xe−

∫
p(t)dtp(t) · 0 + e−

∫
p(t)dt · e

∫
p(t)dt = 1.

The linear equation (3) becomes

dy

ds
= e−

∫
p(s) dsq(s).

4. Lowering the dimension or the order using symmetries

In the case of an equation in Rn (or on a manifold) we can use symmetries to
reduce the equation to the one in Rn−1, or even in a space of lower dimension.

Example 24. (Motion in a central force field) The second Newton
law gives the differential equation

mr̈ = F (r).

Since r = (x, y, z) ∈ R3, and this is a second order equation, we actually deal with
a system whose phase space is of dimension six.5 We say that the force field is
central if it is of the form

(16) F (r) = f(r)r, r = ‖r‖.
4The substitution s(t, x) = xα

tβ , y(t, x) = log t also transforms a generalized equation to

quadrature from, although the condition (14) is not fulfilled.
5Using the substitution (x1, x2, x3, x4, x5, x6) := (r, ṙ).
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The condition (16) is equivalent to F being invariant with respect to the group of
rotations SO(3).

A central field is always conservative: if we set

U(r) = U(r) := −
∫

rf(r) dr,

we have
−∇U = −dU

dr
∇r = r f(r)

1
r

r = f(r) r = F (r).

Therefore the Law of conservation of energy holds:

m‖ṙ‖2
2

+ U(r) = E,

for some constant E ∈ R.
The angular momentum, r× ṙ is also constant in a motion with a central force

field. Indeed:

d

dt
(r × ṙ) = ṙ × ṙ + r × r̈ = 0 + r × 1

m
f(r)r = 0.

Note that here we used the fact that the system is SO(3)-invariant, i.e. that it is
of the form (16). We conclude that a position vector r satisfies

m‖ṙ‖2
2

+ U(r) = E, r × ṙ = ~µ,

for some constant ~µ ∈ R3. For a generic choice of E ∈ R, ~µ ∈ R3 the set

S :=
{
(u, v) ∈ R3 × R3 | m‖v‖2 + U(u) = E, u× v = ~µ

}

is a two dimensional manifold, i.e. a surface. Therefore we lowered the order the
dimension of the phase space from six to two. The roots of these two conservation
laws lie in the fact that a central force field possesses the spherical symmetry,
meaning that the potential energy and the force field are invariant under rotations
around the origin (see [1, 4] for more details).

Theorem 25. Let ϕε be a symmetry of the system (4) and let

∂ϕε

∂ε

∣∣∣∣
ε=0

(t0, x0) 6= 0.

Then there exist a neighbourhood I1 × U1 of (t0, x0) in I × U and local coordinates

(s, y) = (s, y1, . . . , yn)

in I1 × U1 such that the equation (4) has the form

dy

ds
= G(s, y1, . . . , yn−1).
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Since the vector field G does not depend on yn, we reduce the initial equation
to the one in Rn−1 (at least locally). Let

G(s, y1, . . . , yn−1) = (g1(s, y1, . . . , yn−1), . . . , gn(s, y1, . . . , yn−1)).

If we are able to solve the new equation




y′1(s) = g1(s, y1, . . . , yn−1)
...

y′n−1(s) = gn−1(s, y1, . . . , yn−1),

we get the solution of the initial equation by solving:

y′n(s) = gn(s, y1(s), . . . , yn−1(s))

which is in quadrature form.

Proof of Theorem 25. The proof is basically the same as the proof of Theo-
rem 17. We choose coordinates (s, y) = φ(t, x) such that

ψε := φ ◦ ϕε ◦ φ−1 and G := φ∗F

satisfy
ψε : (s, y1, . . . , yn) 7→ (s, y1, . . . , yn + ε), (ψε)∗G = G.

This implies
G(s, y1, . . . , yn + ε) = (s, y1, . . . , yn),

i.e. G does not depend on yn.
The construction of the diffeomorphism φ goes as following. First we map

∂ϕε

∂ε

∣∣∣
ε=0

to ∂
∂xn

. Then we define

ψ : (t, x1, . . . , xn) → ϕxn(t, x1, . . . , xn−1, 0).

Using the Inverse function theorem, we define φ as ψ−1 (locally).
In practice, as in the case n = 1, we can find the new coordinates (s, y1, . . . , yn)

from the condition:

∇s(t, x1, . . . , xn) · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 0

∇y1(t, x1, . . . , xn) · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 0

...

∇yn−1(t, x1, . . . , xn) · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 0

∇yn(t, x1, . . . , xn) · ∂ϕε

∂ε

∣∣∣∣
ε=0

= 1.
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From the above construction we can also see a geometrical meaning of some
substitutions which reduce the order of the equation:

(17) x(n) = F (t, x, x′, . . . , x(n−1))

to n− 1, since every equation (17) can be transformed to (4).
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comments and suggestions. The author also thanks the anonymous referee for many
valuable remarks.

REFERENCES

[1] V. I. Arnol’d, Ordinary Differential Equations, MIT Press, 1973.

[2] V. I. Arnol’d, Geometrical Methods in the Theory of Ordinary Differential Equations, Grund-
lehren der mathematischen Wissenschaften, Volume 250, Springer-Verlag, New York, 1983.

[3] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd ed., Springer, New York
1989.

[4] L. R. Bryant, An Introduction to Lie Groups and Symplectic Geometry, in IAS/Park City
Mathematics Series, Volume 1, American Mathematical Society, Institute for Advanced
Study, 1995.

[5] R. E. Hydon, Symmetry Method for Differential Equations, Cambridge University Press,
2000.
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