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A PROOF OF METHOD OF CYLINDRICAL SHELLS BASED
ON A GENERALIZED INTEGRAL REPRESENTATION

OF ADDITIVE INTERVAL FUNCTION
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Abstract. In this paper we provide a generalized integral representation of addi-
tive interval function based on a fundamental integral representation of additive interval
function given in Zorich’s textbook, Mathematical Analysis, Vol I. Then we use it to
give a rigorous proof of the method of cylindrical shells for the evaluation of volume of
solid of revolution about vertical line.
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1. Introduction

In most undergraduate calculus textbooks, the method of cylindrical shells is
given, in order to evaluat easily the volume of solid of revolution about a vertical
line (in many cases about y-axis in Cartesian coordinate system). But almost all
the textbooks do not provide a rigorous proof of the validity of this method (for
example, see [1–3, 5, 6]). Although it is obvious in the frame of measure theory, it
is still vital to give a vigorous proof of this method on the background of Riemann
integral. On Page 376 in Zorich’s book [7], a proposition concerning an additive
interval function to be expressed as an definite integral is provided, which we call
a fundamental integral representation of additive interval function, that is

Proposition 1. Suppose that an additive function I(α, β), defined for points
α, β of a closed interval [a, b], is such that there exists a function g ∈ R[a, b] con-
nected with I as follows: the relation

inf
x∈[α,β]

g(x)(β − α) ≤ I(α, β) ≤ sup
x∈[α,β]

g(x)(β − α)

holds for any closed interval [α, β] such that a ≤ α ≤ β ≤ b. Then

I(a, b) =
∫ b

a

g(x)dx.

Here an additive interval function means a function (α, β) 7→ I(α, β) that
assigns a real number I(α, β) to each ordered pair of points (α, β) of a fixed bounded
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closed interval [a, b], in such a way that the following equality holds for any triple
of points α, β, γ ∈ [a, b]: I(α, γ) = I(α, β) + I(β, γ).

Using Proposition 1, the calculation of arc length, of area of a curvilinear
trapezoid, and of volume of a solid of revolution about horizontal line (that is
about x-axis in Cartesian coordinate system) are just the direct corollaries. But
for the solid of revolution about y-axis in Cartesian coordinate system, it is not
seemly the case, without resorting to measure theory. In this paper, we give a
generalized version of this proposition (see the theorem 1. As a direct application
of this generalized theorem, we provide a rigorous proof of the method of cylindrical
shells.

2. Main result

A generalized version of Proposition 1 reads as follows.

Theorem 1. Suppose V = V (α, β) is an additive (oriented) interval function
defined for any points α, β belonging to a bounded non-degenerate closed interval
[a, b]. Let functions f and g be Riemann integrable on [a, b]. Assume that for any
closed interval [α, β] such that a ≤ α ≤ β ≤ b, there exist ξ, η ∈ [α, β], such that
the following condition hold:

(1) f(ξ) inf
α≤x≤β

g(x)(β − α) ≤ V (α, β) ≤ f(η) sup
α≤x≤β

g(x)(β − α).

Then V (a, b) can be expressed as the definite integral

V (a, b) =
∫ b

a

f(x)g(x)dx.

Proof. Since f, g are Riemann integrable, they are bounded on [a, b]. Let
A = sup

x∈[a,b]

|f(x)| + 1, B = sup
x∈[a,b]

|g(x)| + 1. For any partition P : x0 = a < x1 <

x2 < · · · < xn = b with corresponding distinguished points ηi ∈ ∆i (or ξi ∈ ∆i)
according to condition (1), i = 1, 2, . . . , n, let ∆i = [xi−1, xi],∆xi = xi − xi−1 and
ω(f ;∆i) be the oscillation of f on the subinterval ∆i. Then by condition (1) we
obtain

V (a, b) =
n∑

i=1

V (xi−1, xi) ≤
n∑

i=1

f(ηi) sup
x∈∆i

g(x)∆xi

=
n∑

i=1

f(ηi)
(

sup
x∈∆i

g(x)− g(ηi)
)
∆xi +

n∑

i=1

(
f(ηi)− f(ξi)

)
g(ηi)∆xi

+
n∑

i=1

f(ξi)
(
g(ηi)− g(ξi)

)
∆xi +

n∑

i=1

f(ξi)g(ξi)∆xi

≤ 2
n∑

i=1

Aω(g;∆i)∆xi +
n∑

i=1

ω(f ;∆i)B∆xi +
n∑

i=1

f(ξi)g(ξi)∆xi.
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In the same way, we obtain

V (a, b) =
n∑

i=1

V (xi−1, xi) ≥
n∑

i=1

f(ξi) inf
x∈∆i

g(x)∆xi

=
n∑

i=1

f(ξi)g(ξi)∆xi −
n∑

i=1

f(ξi)
(
g(ξi)− inf

x∈∆i

g(x)
)
∆xi

≥
n∑

i=1

f(ξi)g(ξi)∆xi −
n∑

i=1

Aω(g;∆i)∆xi.

Since f, g are Riemann integrable on [a, b], we know that (for reference, see [7]): for
any ε > 0, there exists a number δ1 > 0, such that for any partition P ∗ on [a, b] for
which mesh λ(P ∗) < δ1, the oscillation of f and g satisfy

n∑

i=1

ω(g;∆i)∆xi < ε/(6A),
n∑

i=1

ω(f ;∆i)∆xi < ε/(3B).

Now for the prescribed ε, choose 0 < δ < δ1, then for any partition with distin-
guished points (P, ξ) on [a, b] for which mesh 0 < λ(P ) < δ, we have from above
that

−ε < −ε/6 < V (a, b)−
n∑

i=1

f(ξi)g(ξi)∆xi < ε/3 + ε/3 < ε,

that is ∣∣∣∣V (a, b)−
n∑

i=1

f(ξi)g(ξi)∆xi

∣∣∣∣ < ε,

which is equivalent to V (a, b) =
∫ b

a
f(x)g(x)dx. Thus the proof is finished.

Actually, Theorem 1 is a generalized version of Proposition 1, because the
latter is just the same as the former in the special case of f(x) = 1,∀x ∈ [a, b].

3. Applications

As a direct application of Theorem 1, we give a rigorous proof of the method
of cylindrical shells, which is very useful to calculate the volume of the solid of
revolution about vertical line.

Suppose a nonnegative Riemann integrable function y = g(x) is defined on the
bounded closed interval [a, b], where 0 ≤ a < b. Let D = {(x, y) ∈ R | a ≤ x ≤
b, 0 ≤ y ≤ g(x)} be the ordinate set of g (for ordinate set, see [3]). Then revolve
this set about the coordinate axis y, see figure below. As a consequence, the volume
V (a, b) of this solid of revolution about y-axis can be calculated by the method of
cylindrical shells, and the formula of this volume is (see [1–6])

V (a, b) =
∫ b

a

2πx · g(x)dx, where 0 ≤ a < b.
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It is intuitively and geometrically obvious that the above volume function V =
V (a, b) is an additive interval function defined on Cartesian product [a, b] × [a, b].
By Theorem 1 we then give a rigorous proof of formula (2). Actually we see from
the picture below that, for any α, β with a ≤ α < β ≤ b,

V (α, β) ≤ πβ2 sup
α≤x≤β

g(x)− πα2 sup
α≤x≤β

g(x) = π(β2 − α2) sup
α≤x≤β

g(x)

= 2π

(
β + α

2

)
sup

α≤x≤β
g(x)(β − α).

Similarly,

V (α, β) ≥ πβ2 inf
α≤x≤β

g(x)− πα2 inf
α≤x≤β

g(x) = π(β2 − α2) inf
α≤x≤β

g(x)

= 2π

(
β + α

2

)
inf

α≤x≤β
g(x)(β − α).

As a result, we see that the condition (1) of Theorem 1 is fulfilled, where f(x) = 2πx,
with both ξ and η of Theorem 1 to be the middle point (α +β)/2 of interval [α, β].
Therefore we see the method of cylindrical shells is actually rigorous, that is the
formula (2) is right, provided the function g is nonnegative Riemann integrable on
interval [a, b], where 0 ≤ a < b < +∞.
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