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EULER-POINCARÉ CHARACTERISTIC—A CASE OF
TOPOLOGICAL SELF-CONVINCING

Milosav M. Marjanović

Abstract. In this paper we establish a topological property of geometric objects
(lines, surfaces and solids) called Euler-Poincaré characteristic. Since the paper is
intended for a large profile of mathematics teachers, our approach is entirely intuitive
and majority of readers can omit two addenda whose understanding requires a solid
knowledge of topology.

E-P characteristic is an integer which we calculate here decomposing lines into
fibers being finite sets of points, surfaces into fibers being lines and solids into fibers
being surfaces.

When an object is subjected to a “plastic” deformation its shape and size changes
as well as the alternating sums resulting from the method of calculation, but the value
of these sums stays unchanged. This fact serves to convince the reader that E-P charac-
teristic is a stable topological property. The same fact gives this approach an advantage
over usually practiced ones which require a triangulation of geometric objects.
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1. Introduction

This paper is intended for those readers who have no formal knowledge of
topology. All objects that we consider are planar or solid shapes known to the
reader from his/her school geometry course and, here in this paper, referred to as
geometric objects. An elementary approach to ideas and methods of topology does
not mean that some of its contents are presented using the techniques of introduc-
tory university courses of analysis, but it means that such an approach must be
completely intuitive, based on imagination and aimed at conceptual understanding.
In that way, this paper (excluding two addenda) is an approachable piece of math-
ematics which may be easily read by a large profile of teachers (including primary
school ones).

The topic treated in this paper is the Euler-Poincaré characteristic, what is
an integer being a very stable (topological) property of geometric objects. When
the size and the shape of an object changes as an effect of a “plastic” deformation,
its topological properties stay unchanged. Our method is the formation of alter-
nating sums which also change under plastic deformations, but their value stays
unchanged, what makes a reader be convinced that such a number is really a topo-
logical property. Possibility of this verification gives an advantage to this approach
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when it is compared to those ones depending on polyhedral shaping of objects (see,
for example, [C-R]). This is particularly true in the case of surfaces when they are
represented as the objects in R3 (including possibly a command for gluing points
of their edges).

Two addenda are intended for those readers having a basic knowledge of topol-
ogy. The second of them contains all arguments which show that our approach is
legitimate (and, in addition, a condition from [M2] is somewhat relaxed).

2. Euler’s polyhedron formula

Let a convex polyhedron has v vertices, e edges and f faces, then

v − e + f = 2.

Verifying this formula in the case of some special polyhedra a) tetrahedron, b) cube,
c) hexagonal pyramid, we have: a) 4−6+4 = 2, b) 8−12+6 = 2, c) 7−12+7 = 2.
Holding true for all convex polyhedra, being hidden for a quick understanding, this
fascinating relation is known as the Euler’s polyhedron formula and it appeared first
in a note submitted by L. Euler to the Proceedings of the Petersburg Academy of
1752/53. But a variant of this formula was found in the Descartes’ manuscript
“Progymnasmata”. Namely, for a convex polyhedron, if α is the number of its solid
angles (i.e. its vertices), ϕ the number of its faces and ρ the number of its plane
angles (i.e. angles at the vertices of the faces), then Descartes proves that

ρ = 2ϕ + 2α− 4.

As each angle has two edges as its legs and each edge is the leg of four angles,
ρ = 2e. Then, from 2e = 2ϕ + 2a − 4, the Euler’s formula α − e + ϕ = 2 follows.
Thus, it is evident that this formula of Descartes is a precursor of Euler’s formula
([Z-B]).

There exist several interesting applications of the Euler’s formula to the study
of polyhedra and planar graphs. One of them is the so called topological proof of
existence of five Platonic solids (polyhedra with congruent faces of regular polygons
and the same number of faces meeting at each vertex).

Let p be the number of edges of each face and q the number of edges meeting
at each vertex. Counting each edge twice their number is pf or qv. Thus, pf = 2e
and qv = 2e. Substituting in Euler’s formula, we have 2e/q − e + 2e/p = 2, what
implies

1
p

+
1
q

=
1
2

+
1
r

>
1
2
.

The only solutions in (p, q) of this inequality are: (3, 3), (4, 3), (3, 4), (5, 3) and
(3, 5), corresponding to tetrahedron, hexahedron (cube), octahedron, dodecahedron
and icosahedron, respectively.
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3. Topological equivalence

Number 2 in Euler’s formula is a deep, stable characteristic (property) of a
whole class of geometric objects called topological spheres. Our first aim here is
an intuitive description of topologically equivalent geometric objects and of their
topological properties.

When a geometric object is imagined to be made of the ideally plastic substance
and when it is allowed to make some parts of it longer, wider stretching them in all
directions or to make some other its parts smaller contracting them in all direction,
then that object is said to be under a plastic deformation. Let us add that under
plastic deformations two different points of an object are not allowed to coincide.
But the object is allowed to be cut into pieces at some of its points (case of lines)
or along some lines (case of surfaces) or along some surfaces (case of solids) and
after being plastically deformed these pieces have to be glued together in the places
of cutting. When an object is subjected to these allowed transformations another
object of different shape and size is obtained, but such two objects are said to be
topologically equivalent or to have the same topological type. A property shared
by all topologically equivalent objects is called a topological property or topological
invariant.

The figures that follow illustrate some of the basic topological types.
1. Topological arc. Let [0, 1] = {x : 0 6 x 6 1} be the unit interval. Deforming

it, a sequence of lines is obtained each representing one and the same topological
type called topological arc.

Fig. 1. Lines representing topological arc

2. Topological circle. Let S1 = {(x, y) : x2 + y2 = 1} be the unite circle.
Deforming it, a sequence of lines is obtained, each representing one and the same
topological type called topological circle.

Fig. 2. Lines representing topological circle

When a circle is cut at a point A, the ends can be tied together making knots
in different ways.
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Fig. 3. Knots represent topological circle

3. Topological disk. Let D2 = {(x, y) : x2 + y2 6 1} be the unit disk. A
sequence of topologically equivalent objects to the unit disk is represented in Fig. 4.

Fig. 4. Surfaces representing topological disk

4. Topological ring (annulus). Let R = {(x, y) : 1
4 6 x2 + y2 6 1} be the

circular ring. Surfaces topologically equivalent to it are represented in Fig. 5.

Fig. 5. Surfaces that represent topological ring

5. Topological sphere. Let S2 = {(x, y, z) : x2 + y2 + z2 = 1} be the unit
sphere. Surfaces topologically equivalent to it are represented in Fig. 6.

Fig. 6. Surfaces that are topological sphere

The requirement for the validity of Euler formula that a polyhedron is convex
only ensures that its surface is topological sphere.
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4. Addendum 1

Let us remind that a formal definition of topological equivalence of two objects
(spaces) X and Y mean that there exists a mapping f : X → Y which is 1–1 and
onto and both mappings f and f−1 are continuous. A property that an object has
is topological whenever that property has each topologically equivalent object to
it.

The generalization of Euler’s formula to n-dimensional convex polyhedra (poly-
topes) is due to Swiss mathematician Ludwig Schläfli (1814–1895), who states that

f0 − f1 + · · ·+ (−1)n−1fn−1 = 1− (−1)n,

where fi, i = 0, 1, . . . , n − 1 is the number of i-dimensional faces of a convex
n-dimensional polyhedron.

The most significant generalization of this Euler’s result is due to the French
mathematician Henri Poincaré, who is also considered to be the founder of topology.
Namely, for each n-dimensional polyhedron P , Poincaré considers the number

χ(P ) = β0 − β1 + · · ·+ (−1)nβn,

where βi, i = 0, 1, . . . , n are Betti numbers (ranks of homology groups Hi(P ),
i = 0, 1, . . . , n). Thus, χ(P ) is evidently a topological property of the polyhedron
P which is called Euler-Poincaré characteristic. In addition, Poincaré proves that

f0 − f1 + · · ·+ (−1)nfn = χ(P ),

where fi is the number of i-dimensional faces of P . The last relation also serves for
the calculation of the Euler-Poincaré (E-P) characteristic of the polyhedron P .

A disadvantage of this way of calculation is the fact that for a geometric object
X, to calculate χ(X) a polyhedron P which is topologically equivalent to X has
to be found, what becomes more and more complex when the dimension of X
increases.

5. Euler-Poincaré characteristic

This section is intended for those readers who omit Addendum 1. The re-
quirement that a polyhedron is convex ensures only that its surface is a topological
sphere. Thus, if the surface of a polyhedron is topological sphere, then Euler’s
formula applies to such a polyhedron or, better to say, to its surface. The number
2 in that formula is a deep property of topological spheres and it was the great
classical mathematician Henri Poincaré (1854–1912) who defined an integer to be
a topological property of all other geometric objects. That integer is called Euler-
Poincaré (E-P) characteristic and its precise definition is beyond each elementary
approach. Instead of defining it, we will described a method of calculation which
produces E-P characteristics of a variety of geometric objects.

For a geometric object X, its E-P characteristic will be denoted by χ(X).
When X is one point then χ(X) is taken to be 1. When X consists of n points,
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then χ(X) is taken to be n. More generally, when the objects Xi, i = 1, 2, . . . , n
do not intersect and are at positive distance each from the other, then χ(

⋃
Xi) =

χ(X1) + · · ·+ χ(Xn).
Now we proceed inductively and we calculate E-P characteristic of a line de-

composing it into fibers having a finite number of points, of a surface decomposing
it into fibers that are lines, etc. In Fig. 7 a topological arc and a topological circle
are seen decomposed into fibers.

Fig. 7. a) Decomposition into fibers of an arc, b) decomposition into fibers of a circle

In the case a) (looking upwards), the fibers are: initial fiber – one point,
running fibers – two points, transitional fiber – two points, running fibers – one
point, transitional fiber – two points, running fibers – two points, final fiber – one
point.

For the sake of simplicity, let us call initial and final fibers also transitional.
Forming an alternating sum whose members are characteristics of transitional and
running fibers taken in order, we get χ(X) = 1− 2 + 2− 1 + 2− 2 + 1 = 1. Hence,
when X is a topological arc, its E-P characteristic is 1.

In the case b) the fibers are: one point, two points, three points, four points,
three points, two points, one point. Calculating, we get χ(X) = 1− 2 + 3− 4 + 3−
2 + 1 = 0. Hence, E-P characteristic of a topological circle is 0. In Fig. 7 two poor
shapes of a topological arc and a topological circle are given. In Fig. 8 two more
regular shapes represent them.

Fig. 8. “Good” shapes of a) a topological arc, b) a topological circle

Now the calculation of E-P characteristic is simpler: a) 1− 1 + 1 = 1, b) 1−
2 + 1 = 0. We see that alternating sum changes dependently on the shape of an
object but its value stays unchanged being a topological property of these objects.



Euler-Poincaré characteristic 27

I still can remember my students, even those preparing to be elementary school
teachers, how they liked to distort the shape of an object and verify that its E-P
characteristic stayed unchanged ([M1]). I also practiced to assign them exercises as
the following one:

Which topological type is represented by the lines in the following figure?

Fig. 9.

Calculate E-P characteristic in each of these cases.

( a) 1−1+2−3+3−3+2−1+1 = 1, b) 1−2+3−4+5−4+3−2+1 = 1)
The students really enjoyed doing this type of exercises.

In the case of two touching circles

Fig. 10. Decomposition into fibers of two touching circles

we have χ = 1− 2 + 1− 2 + 1 = −1.

Next we consider the examples of surfaces decomposed into fibers being lines.
In Fig. 11 such a decomposition of a sphere and of a torus is seen.

a) Fibers are: one point, running circles, one point. Hence, χ = 1− 0 + 1 = 2.

b) Fibers are: one point, running circles, two touching circles, running pair
of disjoint circles, two touching circles, running circles, one point. Hence, χ =
1− 0 + (−1)− 0 + (−1)− 0 + 1 = 0.
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Fig. 11.

6. Surfaces

The most familiar surfaces are those that arise as the boundaries of solids: a
sphere is the boundary of a ball, a torus is the boundary of a solid ring, etc. We can
say for the torus that it is a sphere with one hole and each surface that is boundary
of a solid is a sphere with g holes, g = 0, 1, . . . , which is usually denoted by Mg
and whose decomposition into fibers is represented in Fig. 12.

Fig. 12. Decomposition of sphere with g holes into fibers

It is easy to verify that χ(Mg) = 1− 2g + 1 = 2− 2g. (Let us notice that as soon
as the decomposition passes through a hole, −2 is added as a summand).

When a long narrow rectangular paper strip is twisted 180 degrees and then,
two opposite sides of such “rectangle” are glued together, the model of a surface is
obtained which is called the Möbius strip (after its discoverer, German mathemati-
cian A. P. Möbius, 1790–1869), Fig. 13.

This surface is remarkable for being one-sided. (A lady-bird can walk on this
surface, starting from a point and arriving at that the same point being on its
opposite face without crossing its edge). Let the reader checks that the Möbius
strip M has a decomposition into fibers: one arc, two running disjoint arcs, one
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Fig. 13. The Möbius strip

arc and that χ(M) = 1 − 2 + 1 = 0. It is somewhat more challenging to see the
decomposition: one circle, one running circle, one circle and accordingly χ(M) =
0− 0 + 0 = 0.

When diametrically opposite points of a circle are glued together, a half-circle
is obtained with two its end points left to be glued together.

Fig. 14.

Thus, the line that arises after this gluing of points is a circle again.
When diametrically opposite points of a boundary circle of a ring are glued

together, a Möbius strip is obtained again. To see it, the ring is cut along two arcs
α and β (see Fig. 15), two its halves are straightened out, one of them is turned
upside down and, they are joined to form a rectangle whose two opposite sides have
to be glued together, producing so a Möbius strip in an already described way.

Fig. 15. Another model for the Möbius strip

In general, a surface (without boundaries) is a geometric object each point of
which has a neighborhood topologically equivalent to a open disk in the Euclidean
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plane. (Let you look at a torus and see how small neighborhoods of its points look
just like somewhat distorted plane disks).

In the next figure, two one-sided (non-orientable) surfaces are represented.

Fig. 16. a) Projective plane, b) Klein bottle

When a cap is cut from the sphere and diametrically opposite points of the
boundary circle are glue together, a one-sided surface is obtained, called projective
plane (Fig. 16a)). When two such caps are cut off and the points of boundary
circles are glued as in the former case, a one-sided surface is obtained, called Klein
bottle, (F. Klein, German mathematician, 1849–1925) (Fig. 16b)).

In the case a), a decomposition into fibers is: one point, running circles, a
circle and therefore, χ = 1− 0 + 0 = 1. In the case b), a decomposition is: a circle,
running circles, a circle and χ = 0− 0 + 0 = 0.

Let us notice that a parallel divides projective plane into a topological disc
and a Möbius strip (Fig. 15) and similarly a Klein bottle is divided by such a
parallel into two Möbius strips. Of course, as soon as a Möbius strip is a part
of a surface, such a surface is one-sided. When a cap is cut off a sphere with k
holes, k = 0, 1, 2, . . . and diametrically opposite points of the boundary circle are
glue together, a one-sided surface is obtained (Fig. 17a)). When two caps are cut
off and points of boundary circles are glued together as before, another one-sided
surface is obtained (Fig. 17b)).

Fig. 17.
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In the former case (under a)) a decomposition has for its initial fiber: one
point, and the final one: a circle. Such two fibers in the latter case (under b)) are
both a circle while the summand −2 is added whenever the decomposition passes
through a hole. Hence, we have

a) χ = 1− 2k + 0 = 1− 2k, b) χ = 0− 2k + 0 = −2k.

Let us add at the end that surfaces represented in Fig. 17 are, up to topological
equivalence, all one-sided surfaces without boundary.

7. Addendum 2

All spaces that we consider are supposed to be Hausdorff. Given the spaces
X and Y , let I = [0, 1] be the unit interval and Y × I the topological product of
the spaces Y and I. Suppose that the spaces X and Y × I are disjoint and let
W = X ⊕ (Y × I) be their disjoint topological sum.

Given a continuous mapping f : Y → X, then when the points (y, 0) and f(y)
are identified for each y ∈ Y , a quotient space W is obtained (called in homotopy
theory the mapping cylinder of f). The quotient mapping x 7→ [x] which maps
each point x ∈ X onto its equivalence class [x] in W is an embedding and the
homeomorphic copy of X in W will be denoted by X.

1. The space X is a strong deformation retract of the space W .
Proof. Let α : W × I → W be given by α(x, u) = x for each x ∈ X and each

u ∈ I and let α((y, t), u) = (y, t(1 − u)), for y ∈ Y and t ∈ I and u ∈ I. Let
p : W → W be the natural projection and p × i : W × I → W × I be given by
(p × i)(w, u) = ([w], u). Let H : W × I → W be given by H([x], u) = [x], for each
x ∈ X and u ∈ I and H([(y, t)], u) = [(y, t(1−u))], for each y ∈ Y , t ∈ I and u ∈ I.
Since p◦α = H◦(p× i) and being p◦α continuous and p× i quotient, it follows that
H is continuous. Thus H is a strong deformation retraction and X is a strong
deformation retract of W .

Now we describe a quotient model which will be the basis for the calculation
of E-P characteristic. Let (Xi), i = 0, 1, . . . , n and (Yj), j = 1, . . . , n be two
sequences of disjoint spaces. Further, we suppose that all spaces Xi, i = 0, 1, . . . , n
and Yj × [j − 1, j], j = 1, . . . , n are mutually disjoint and let Y be their disjoint
topological sum. Let the mappings

f0 : Y1 × {0} → X0, f
i
: Yi × {i} → Xi,

f i : Yi+1 × {i} → Xi, i = 1, . . . , n− 1, fn : Yn × {n} → Xn

be continuous.

Fig. 18.
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Let us write formally f
0

= f0 = f0 and f
n

= fn = fn. Now we suppose that
for each i = 0, 1, . . . , n the points (a, i) and f

i
(a, i) are identified for each a ∈ Yi,

as well as the points (b, i) and f i(b, i) for each b ∈ Yi+1. Each other point of Y is
identified with itself. The quotient space which is obtained by this identification
will be denoted by X.

The spaces Xi and Yi×{t}, t ∈ (i−1, i) are homeomorphic to their embedded
copies Xi and Y i(t), called fibers of X and these fibers make an order decomposi-
tion, called here the fibrous decomposition of X and denoted by X0(Y1) . . . (Yn)Xn.
The number n will be called the length of this decomposition and when n = 0, the
decomposition reduces to X0. Mapping each fiber Xi onto i and each Y i(t) onto
t, a function ϕ : X → [0, n] is defined and ϕ−1([0, k]), (k < n) is a subspace of X
whose fibrous decomposition is X0(Y1) . . . (Yk)Xk. We call ϕ the function associ-
ated with the given fibrous decomposition. (As it is seen, we use a terminology to
avoid confusion with the existing one based on the morpheme “fiber”).

A finite space X will be called 0-fibrous and the space X itself will be considered
to be its own fibrous decomposition. Proceeding inductively we call a topological
space m-fibrous when it has a fibrous decomposition each fiber of which is k-fibrous
for some k 6 m− 1. Now we are ready to prove the statement that follows.

2. Let X be an m-fibrous space having its fibrous decomposition given by the
sequences X0, X1, . . . , Xn and Y1, . . . , Yn and the set of mappings f

i
, f i, i =

0, 1, . . . , n. Then, the Euler-Poincaré characteristic is defined for all spaces X0,
X1, . . . , Xn and Y1, . . . , Yn as well as for X and

χ(X) = χ(X0)− χ(Y1) + χ(X1)− · · ·+ χ(Xn−1)− χ(Yn) + χ(Xn).
Proof. This statement is trivially true when m = 0. Let us suppose that it is

true for all spaces which are k-fibrous for some k 6 m− 1. Let X be an m-fibrous
space. When X has a fibrous decomposition of the length 0, then X is k-fibrous
for some k 6 m − 1 and the statement is true. Let us suppose it is true for all
m-fibrous spaces having a fibrous decomposition of the length less than n. Let
X be an m-fibrous space and let X0, X1, . . . , Xn and Y1, . . . , Yn be sequences
which together with the set of mappings f

i
, f i, i = 0, 1, . . . , n determine a fibrous

decomposition of X. According to the definition of an m-fibrous space, the spaces
X0, X1, . . . , Xn and Y1, . . . , Yn are k-fibrous for some k 6 m − 1 and according
to the inductive hypothesis on m, the E-P characteristic is defined for all of them.

Let ϕ be the function associated with the fibrous decomposition of X. Mod-
ifying slightly the statement 1, ϕ−1([0, n − 1]) is a strong deformation retract of
ϕ−1([0, n − 1/3)), as it is also ϕ−1(n) of ϕ−1((n − 2/3, n]). As we have already
noticed it, the E-P characteristic is defined for ϕ−1(n) ≈ Xn and, according to the
induction hypothesis on n, it is also defined for ϕ−1([0, n− 1]). From the following
homotopy equivalences

ϕ−1([0, n− 1]) ' ϕ−1([0, n− 1/3)), ϕ−1(n) ' ϕ−1((n− 2/3, n]),
it follows that E-P characteristic is also defined for the spaces ϕ−1([0, n−1/3)) and
ϕ−1((n− 2/3, n]). Since these spaces are open in X, we find that

(X,ϕ−1([0, n− 1/3)), ϕ−1((n− 2/3, n]))



Euler-Poincaré characteristic 33

is an excisive triad. Using now a very well known property of E-P characteristic
(see for example [D]), we can write

χ(X) = χ(ϕ−1([0, n− 1/3)) + χ(ϕ−1(n− 2/3, n]))− χ(ϕ−1((n− 2/3, n− 1/3))).

Since ϕ−1(n− 2/3, n− 1/3)) ' Yn and using already established homotopy equiv-
alences, we have

χ(X) = χ(ϕ−1([0, n− 1])) + χ(ϕ−1(n))− χ(Yn).

Using the induction hypothesis on n, we replace χ(ϕ−1([0, n − 1])) by the corre-
sponding alternating sum, obtaining so the following equality

χ(X) = (χ(X0)− χ(Y1) + · · ·+ χ(Xn−1)) + χ(Xn)− χ(Yn).

Thus, we have proved all conclusions of the statement 2.
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