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ON COMPUTING THE DERIVATIVE OF A FUNCTION

Haryono Tandra

Abstract. This note discusses a fact and its application on examining the ex-
istence of a derivative of a function at a point. The application provides a relatively
easier method while avoiding laborious computations when standard computing is used.
This may be introduced as a part of applications of the derivative in a Calculus course.
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0. Introduction

With all the basic rules in hands, students may want to get things easier with
their works on computing a derivative of a function with or without its definition.
While some of the works are easily judged to be correct or otherwise, some others
are not that easy to be put simply as true or false, and hence need a little discussion.
Two problem-solution below exemplify our concerns, which in turn motivate us to
resolve the issues by providing a better method.

Problem 1. Find the derivative of the function f , where f(x) := cos 3
√

x.

Solution. Write f(x) = cosx1/3. Then f ′(x) = (− sinx1/3)( 1
3x−2/3), that is

f ′(x) =
− sin x1/3

3x2/3
.

Problem 2. Find the derivative of the function g, where g(x) := x cos 3
√

x.

Solution. Write g(x) = x cos x1/3. Then

(1) g′(x) = (x sin x1/3)
(

1
3
x−2/3

)
+ cos x1/3 =

1
3
x1/3 sin x1/3 + cosx1/3.

Despite the fact that the answers are true, both works missed to check the
case x = 0. Perhaps, the reason is because one simply claims that f ′(0) does not
exist, since the formula f ′(x) = (− sin x1/3)/3x2/3 does not work for x = 0, while
g′(0) exists, since the formula g′(x) = 1

3x1/3 sin x1/3 + cos x1/3 works for x = 0. As
a matter of fact, both formula of f ′ and g′ (as can be seen from (1) provide the
derivative for all x but 0, meaning that the case x = 0 has yet to be examined. The
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part of the work that is left undone for the function f would be

lim
x→0

∣∣∣∣
f(x)− f(0)

x− 0

∣∣∣∣ = lim
x→0

| cosx1/3 − 1|
|x| = lim

x→0

1− cosx1/3

|x|(2)

= lim
x→0

1− cos2 x1/3

|x|(1 + cos x1/3)
= lim

x→0

sin2 x1/3

|x|(1 + cos x1/3)

= lim
x→0

∣∣∣∣
sin x1/3

x1/3

∣∣∣∣
∣∣∣∣
sin x1/3

x1/3

∣∣∣∣
(

1
|x1/3|(1 + cos x1/3)

)

= ∞
or alternatively, by showing that limx→0−(f(x) − f(0))/(x − 0) = −∞, or
limx→0+(f(x)− f(0))/(x− 0) = ∞ (as that of calculation (2), each of these seems
to be not obvious), from which we conclude that f ′(0) does not exist. The missed
part to be checked for the function g would be

(3) lim
x→0

g(x)− g(0)
x− 0

= lim
x→0

x cosx1/3

x
= lim

x→0
cos x1/3 = 1

so that g′(0) exists and equals 1. The idea of removing (2) as a part of the work
for the function f is evidently misleading. For instance, in finding the derivative of
the function h(x) := cos 3

√
x2, if the same idea is used, then one would end up with

the answer that

h′(x) =
−2 sin x2/3

3x1/3

leaving h′(0) unchecked, as is perceived from the formula that h′ is undefined at
x = 0. In fact, using a similar technique with that of (2), we have

lim
x→0

h(x)− h(0)
x− 0

= lim
x→0

cosx2/3 − 1
x

(4)

=
(

lim
x→0

− sin x2/3

x2/3

)(
lim
x→0

sin x2/3

x2/3

)(
lim
x→0

x1/3

cos x2/3 + 1

)

= (−1)(1)
(

0
2

)
= 0

so that h′(0) exists and equals 0. Likewise, removing (3) as a part of the work for the
function g is subject to question: as the formula of g′(x) = 1

3x1/3 sinx1/3 +cos x1/3

is derived from (1) for all x but 0, how do we know that g′(0) = 1
301/3 sin 01/3 +

cos 01/3? Although the assertion is true, such a work does not seem to be well-
sounded.

We have a bad and a good news. If the basic rules of derivatives are all that
we have at this stage, then there is no other way to examine each f ′(0), g′(0)
and h′(0) except using its definition as shown above. This is a bad news, since
computing a derivative using its definition can be very laborious and even difficult.
The powerful Mean Value Theorem, however, turns out to be helpful in fulfilling
our need to reduce computations, as by this we have an elegant and a relatively
easier way of examining the derivative at a point, while removing parts of tedious
works such as those of (2),(3), and (4). This is apparently a good news—the thing
that we want to discuss here.
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1. Computing the derivative

Recall that there is a differentiable function on an open interval containing
a point a such that the limit of the derivative function at a does not exist (e.g.
f(x) := x2 sin(1/x) for x 6= 0, and f(0) = 0), showing that the existence of the
derivative of a function at a point does not imply the existence of the limit of the
derivative function at that point. Yet the converse is true, as we have the following
fact. First note that we write the left and right derivative of a function f as f ′−
and f ′+ respectively.

Fact 3. Let f be a continuous function defined on an open interval I contain-
ing a point a. Suppose that f is differentiable, except possibly at a.
(a) If limx→a+ f ′(x) exists, then f ′+(a) exists and equals limx→a+ f ′(x), and if

limx→a− f ′(x) exists, then f ′−(a) exists and equals limx→a− f ′(x).
(b) If either limx→a+ |f ′(x)| = ∞ or limx→a− |f ′(x)| = ∞, then f ′(a) does not

exist.
Proof. First, we shall show part (a) only for the case when limx→a+ f ′(x) exists,

as the other case is similar. By Mean Value Theorem, there exists a function γ on
some interval (a, b) such that for every x ∈ (a, b), γ(x) is between a and x, and

(5) f ′(γ(x)) =
f(x)− f(a)

x− a

Since γ(x) 6= a for every x ∈ (a, b) (that is, γ is “eventually distinct” from a, by the
definition introduced in [1]) and limx→a+ γ(x) = a, it follows that limx→a+ f ′(γ(x))
exists and equals limx→a+ f ′(x). Therefore, (5) implies

lim
x→a+

f(x)− f(a)
x− a

= lim
x→a+

f ′(γ(x)) = lim
x→a+

f ′(x)

and so f ′+(a) exists and f ′(a) = limx→a+ f ′(x).
For part (b), it suffices to consider the case limx→a+ |f ′(x)| = ∞ only, as we

have the same argument for the other case. Let b > a such that |f ′(x)| > 0 for all
x ∈ (a, b). Now let g(x) := 1/|f ′(x)| for all x ∈ (a, b), so that limx→a+ g(x) = 0. Let
γ be as in part (a) above. By the same argument, it follows that limx→a+ g((γ(x))
exists and equals limx→a+ g(x), that is limx→a+ g((γ(x)) = 0. Thus, noting (5), we
have

lim
x→a+

∣∣∣∣
x− a

f(x)− f(a)

∣∣∣∣ = lim
x→a+

1∣∣∣ f(x)−f(a)
x−a

∣∣∣
= lim

x→a+

1
|f ′(γ(x))| = lim

x→a+
g(γ(x)) = 0

and therefore

lim
x→a+

∣∣∣∣
f(x)− f(a)

x− a

∣∣∣∣ = lim
x→a+

1∣∣∣ x−a
f(x)−f(a)

∣∣∣
= ∞

so that limx→a(f(x)− f(a))/(x− a), hence f ′(a), does not exist.
Notice that the condition in Fact 3(a), that limx→a+ f ′(x) or limx→a− f ′(x)

exists, is weaker than the condition that limx→a f ′(x) exists. Also, the condition in
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Fact 3(b), that limx→a+ |f ′(x)| = ∞ or limx→a− |f ′(x)| = ∞, is weaker than each
condition limx→a |f ′(x)| = ±∞, limx→a f ′(x) = ±∞, limx→a+ f ′(x) = ±∞, and
limx→a− f ′(x) = ±∞.

As applications of Fact 3, consider the function f , g and h in Section 0. Having
the formula f ′(x) = (− sin x1/3)/3x2/3 for all x 6= 0, by Fact 3(b), f ′(0) does not
exist, since

lim
x→0

|f ′(x)| = lim
x→0

1
3|x1/3|

∣∣∣∣
sin x1/3

x1/3

∣∣∣∣ = ∞.

Having the formula g′(x) = 1
3x1/3 sin x1/3 + cos x1/3 for all x 6= 0, by Fact 3(a),

g′(0) = 1, as it is easy to see that limx→0 g′(x) = 1. Since 1 = 1
301/3 sin 01/3 +

cos 01/3, we can simply write the formula for g′ as

g′(x) =
1
3
x1/3 sin x1/3 + cos x1/3

by letting x without an exception. Having the formula h′(x) =
−2 sin x2/3

3x1/3
for all

x 6= 0, by Fact 3(a),

h′(0) = lim
x→0

h′(x) = lim
x→0

−2 sinx2/3

3x1/3

provided the limit exists. In fact, we can immediately see that the limit is

lim
x→0

(−2/3)(x1/3)
sin x2/3

x2/3
= (−2/3)(0)(1) = 0

so that h′(0) = 0. Thus, the practical use of Fact 3 removes tedious computations
(2), (3) and (4).

It is particularly interesting to state the following corollary. Contrasted with
what it looks, the proof of this property is not obvious without the aid of Fact 3.

Corollary 4. Let f and g be functions defined on an open interval I contain-
ing a point c. If f is differentiable on I except possibly at c, g is continuous on I,
and f ′(x) = g(x), for all x ∈ I \{c}, then f is differentiable on I, and f ′(x) = g(x),
for all x ∈ I.

Proof. It suffices to show that f ′(c) exists and f ′(c) = g(c). Since g is contin-
uous at c,

lim
x→c

f ′(x) = lim
x→c

g(x) = g(c).

It follows from Fact 3 that f ′(c) exists and equals g(c), as is desired.

As a nice application of Corollary 4, consider the function g in the solution
of Problem 2. Since g′(x) = 1

3x1/3 sin x1/3 + cos x1/3, for all x 6= 0, it follows
immediately from the corollary that g′(x) = 1

3x1/3 sin x1/3 + cos x1/3 for all x.
Thus, while removing tedious computation (3), the corollary gives a very concise
solution. Notice that, applying the corollary means we immediately conclude that
the formula of the derivative works at the indicated point, without evaluating the
limit of the function at the point as it was done earlier when Fact 3 was used.
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Below are other illustrations showing how effective and compelling Fact 3 and
Corollary 4 in reducing computations. Let each continuous function f be defined
as follows:

(a) f(x) :=
{

3x− 2, −2 ≤ x < 1
x3, otherwise

(b) f(x) := (x− 1)2/3 sin(x2 − 1)1/3

(c) f(x) := (x− 1)1/3 cos x2/3

(d) f(x) := (sin x3)1/3

(e) f(x) := cos(x2/3 + x)2

For f in (a), f ′(x) =





3x2, x < −2
3, −2 < x < 1
3x2, x > 1.

We still need to examine f ′ at

x = −2 and x = 1. Since the left and right limits of f ′ at -2 are 12 and 3 respectively,
it follows from Fact 3(a) that f ′−(−2) = 12 and f ′+(−2) = 3. Therefore f ′(−2) does
not exist. Now since the left and right limits of f ′ at 1 are both equal to 3, by
Fact 3(a), f ′−(1) and f+(1) both exist and equal 3, so that f ′(1) exists and equals
3. Thus, we can write

f ′(x) =





3x2, x < −2
3, −2 < x ≤ 1
3x2, x > 1.

For f in (b),

f ′(x) =
2x

3(x + 1)2/3

(
cos(x2 − 1)1/3 + (x + 1)

sin(x2 − 1)1/3

(x2 − 1)1/3

)

for all x 6= ±1. Therefore

lim
x→1

f ′(x) =
2

3(22/3)
(1 + (2)(1)) = 3

√
2

so that by Fact 3(a), f ′(1) = 3
√

2. Also, we can easily evaluate that lim
x→−1

f ′(x) =

−∞ and hence by Fact 3(b), f ′(−1) does not exist.
For f in (c),

f ′(x) =
(

2x1/3(x− 1)1/3

3

)(
sin x2/3

x2/3

)
+

cosx2/3

3(x− 1)2/3

for all x 6= 0 and x 6= 1. Then, in view of Fact 3(a), since

lim
x→0

f ′(x) =
0
3
(1) +

1
3(1)

=
1
3

it follows that f ′(0) = 1/3. It is easy to check that limx→1 f ′(x) = ∞, so that by
Fact 3(b), f ′(1) does not exist.

For f in (d),

f ′(x) =
(

x3

sin x3

) 2
3

cos x3
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for all x 6= 3
√

nπ (n = 0,±1,±2, . . . ). In view of Fact 3, since

lim
x→0

f ′(x) = (1
2
3 )(1) = 1

and limx→ 3√nπ |f ′(x)| = ∞, it follows that f ′(0) = 1, and f ′( 3
√

nπ) (for each n =
±1,±2, . . . ) does not exist.

For f in (e), f ′(x) = − sin(x2/3 + x)2 · 2(x2/3 + x)((2/3)x−1/3 + 1), or simply

f ′(x) = −2
(
1 + x1/3

) (
2
3
x1/3 + x2/3

)
sin(x2/3 + x)2

for all x 6= 0, hence for all x, by Corollary 4.
Notice that, in contrast with the calculations above, examining each f ′ at each

of those points by bringing into play its definition is indeed quite laborious.

2. Conclusion

In the realm of Calculus, people avoid a certain part of the work they think as
unimportant and tedious, hence not practical to be explicitly shown, or even shortly
discussed, as a part of it. In fact, things might not be just simple because of this
reason. As for our case from each solution of Problem 1 and Problem 2, we have
an issue of leaving the case x = 0 unchecked. The serious thing with removing this
part from the solution of Problem 1 is that, not only does it undermine the concept
thoroughly introduced in the early stage (where the concept of the derivative is
firstly discussed), but worse, as was argued, the idea behind the work is misleading.
The issue with the solution of Problem 2, by leaving that part undone, is even more
profound; it is not well-sounded, though sometimes mistakenly to be true. For each
of those issues, our argument suggests that there is no other way but writing up
that part of the work through some method of clarifications.

The standard way to clarify such a part of the work is by examining the
derivative using its definition, which in most cases can be impractical and difficult.
It turns out we have Fact 3 that, along with Corollary 4, facilitates the part of the
computations by aiding a relatively easier method. With Fact 3 we have a sound
basis that provide a practical way to examine the derivative of a function at a point
where technical and laborious computations that might appears, when standard
computing is used, can be avoided. Fact 3, therefore, as was demonstrated through
some examples, also allows us to explore illustrations that are more varying and
sophisticated than those of its absence. As a part of applications of the derivative,
it may conveniently be discussed in a section where the Mean Value Theorem is
introduced.
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