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MAXIMALLY BALANCED CONNECTED PARTITION PROBLEM
IN GRAPHS: APPLICATION IN EDUCATION

Dragan Matić and Milan Božić

Abstract. This paper presents the maximally balanced connected partition
(MBCP) problem in graphs. MBCP is to partition a weighted connected graph into the
two connected subgraphs with minimal misbalance, i.e., the sums of vertex weights in
two subgraphs are as much equal as possible. The MBCP has many applications both
in science and practice, including education. As an illustration of the application of
MBCP, a concrete example of organizing the course Selected Topics of Number Theory
is analyzed and one balanced partition is suggested. Several algorithms for solving this
NP hard problem are also studied.
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1. Introduction

Many real-life problems can be resolved by using mathematical structures and
their properties. To create a mathematical model, each element of the problem
must be represented as some mathematical structure and the relations between the
elements induce appropriate relations between corresponding mathematical struc-
tures. For solving these problems, the researchers are striving to use effective
mathematical formulations and structures for which theoretical results and practi-
cal techniques have been developed.

For many problems of combinatorial nature, graphs are often used and various
techniques introduced in graph theory are applied in order to solve these problems.

Dealing with complex and large scale graphs, partitioning the graph into small-
er subgraphs is an often used approach. If the problem is represented as a connected
graph, the partitioning naturally requires that the subgraphs (partitions) are also
connected. In situations when weighted connected graph has to be partitioned in-
to two smaller components, the logical request is to ask that both subgraphs are
connected and that the sum of vertex weights in both component are as similar as
possible.

The problem described in the previous paragraph is called Maximally Balanced
Connected Partition Problem (MBCP). The problem is proved to be NP hard [1],
so there is no algorithm which solves it in polynomial time. This fact motivates
the researchers to develop various heuristic methods for solving the MBCP. In this
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paper, mathematical formulation and application of this problem in education is
presented. Also, some methods for solving the problem are explained.

2. Mathematical formulation

Let G = (V,E), V = {1, 2, . . . , n} be a connected graph, |E| = m and let wi

be weights on vertices. For any subset V ′ ⊂ V the value w(V ′) is denoted as a
sum of weights of all vertices from V ′, i.e., w(V ′) =

∑
i∈V ′ wi. The MBCP is to

divide the set of vertices V into two nonempty disjoint sets V1 and V2, such that
subgraphs of G induced by V1 and V2 are connected and the sums of the weights
of vertices from V1 and V2 are almost uniform, ie. the difference between these two
sums is as small as possible.

Formally, the MBCP is to find the partition (V1, V2), such that subgraphs of
G induced by V1 and V2 are connected and the value obj(V1, V2) = |w(V1)−w(V2)|
is minimized.

Example 1. Let us consider the graph shown in Figure 1. The labels of
the vertices are 1, 2, . . . , 6, while the weights are given in brackets, near to the
labels. The total number of weights is 28. Ideally, the partition would contain two
components with the equal weights (14). In that case, the component containing
the vertex 1, with the weight 8 should also contain the vertex 4 (with the weight
6), or vertices 3 and 5. However, in both cases, the components {1, 4} and {1, 3, 5}
are not connected. So, the optimal solution can not be equal to zero, but at
least 2, because the total sum of all weights is even. The optimal solution is
(V1, V2) = ({1, 2, 3}, {4, 5, 6}), and the obj(V1, V2) = |13 − 15| = 2. Note that the
partition (V ′

1 , V ′
2) = ({1, 3, 6}, {2, 4, 5}), also gives obj(V ′

1 , V ′
2) = |13− 15| = 2, but

the graph induced by V ′
2 is not connected, so this partition is not considered as

solution.

Fig. 1. The simple graph and the solution of the MBCP

The MBCP can be generalized if the number of sets in the partition is greater
than 2. This generalized problem is called Balanced Connected Partition of graphs
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for q partitions (BCPq), where q ≥ 2. In this problem, connected vertex weighted
graph has to be partitioned into q partitions V1, . . . , Vq, so that each subgraph
associated to each partition is connected and the weight of the lightest one is the
highest possible, i.e., the distribution of the weights among the subgraphs should
be the most homogeneous possible.

MBCP and BCPq belong to a wide class of graph partitioning problems which
have a lot of direct and closely related applications, both in science and practice.
In engineering field, MBCP and BCPq are applied in digital signal processing [2]
and image processing [3]. Also, this problem solves some social issues like political
districting [4] and organizing some public services in geographical areas [5].

3. Application in education

In education, solving MBCP is used for finding solutions of practical organi-
zational problems, including course management issues, student grouping or orga-
nizing the researchers into connected groups.

The course material is usually divided into lessons and the appropriate diffi-
culty is assigned to each lesson. To establish the connections between the lessons
various criteria, like similarity, analogy, generality or conditionality can be used.
The teacher would like to divide the course material into two disjoint connected
sections, so that the sections are of similar difficulty, as much as it is possible.

Another example would be partitioning the group of students into two smaller
groups. The “connectivity” between two students can be established as “the ability
to work together”. The objective should be to divide a student group into two
smaller, having in mind that groups should be balanced by student abilities.

MBCP can be used to organize researchers engaged in a larger project. In this
case, the researchers are represented as vertices and the vertex weights could be
defined as “amount of time (in hours) to spend in project activities”. The relation
“coauthors of a scientific paper” is a natural connection between researchers and
is in close relation to already mentioned “the ability to work together” property.
Then, the problem is to determine the partition of the set of researchers such that
total time planned for the project in each partition is as equal as possible.

Example 2. In this example, the partitioning the course Selected Topics of
Number Theory into two balanced partitions is described. Whole course is divided
into 32 lessons and the connections between the lessons are shown in the Figure 2.

Whole course is represented as a connected graph, where vertices correspond
to lessons. Two lessons are connected only if there is a direct reason for connection
in semantic or methodological sense. More precisely, the connections between two
lessons are established in cases of analogy, conditionality or both lessons deal with
same or similar mathematical structure or property in the field of number theory.

For example, the Fermat’s little theorem is a direct consequence of Euler’s
theorem. Also it is in direct relation with the congruences and pseudo-prime num-
bers, because one important class of pseudo-prime numbers comes from Fermat’s
little theorem. Thus, the lesson Fermat’s little theorem is connected to these three
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Fig. 2. The Number Theory course organized in connected lessons
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lessons: Euler’s theorem, congruences and pseudo-prime numbers. On the other
hand, in methodological sense, the Fermat’s little theorem can hardly be presented
in the same context with the Fermat’s last theorem, although both theorems are
engendered by the same mathematician. So, the connection between these two
lessons is omitted.

It should be noticed that determining the connections between lessons is a
flexible task and in some way depends on the author’s personal opinion and eval-
uation. Detailed analysis of established connections between lessons in the course
is beyond the scope of this paper and can be investigated by using the references
[6, 7].

The difficulty of each lesson presented in this example is based on the author’s
assessment and can vary, depending on professor’s opinions about the required
lesson’s scope and level of the presentation, course objectives and student skills.

Nevertheless, several objective criteria for assessing the lesson difficulty can be
established and they can follow the principles based on the influence of following
factors:
• Factor I: the scope of the lesson;
• Factor II: the level of typical student skills achieved before the lesson is thought;
• Factor III: the importance of the lesson for forthcoming lessons;
• Factor IV: the importance of the lesson in mathematics, in general.

The Factor I influences to the lesson difficulty in a way that long lessons,
containing a lot of definitions and theorems are generally harder than short ones.
The second factor worries about the level of students pre-knowledge and their
abilities to understand the content of the lesson. Last two factors indicate the
level of comprehensiveness, in the sense that lessons which are pre-requisites for
forthcoming lessons or general mathematical knowledge, should be studied in more
comprehensive way.

To calculate the difficulty level to each lesson, the following notation is intro-
duced. Let coefficients p1, p2, p3 and p4 be the influences of factors (I-IV) and let
L be a lesson. If f1(L), f2(L), f3(L) and f4(L) denote the values assigned to each
factor (I–IV) related to lesson L, then the difficulty level of lesson L is calculated
as

(1) w(L) = 10
4∑

i=1

pifi(L).

All values pi, i = 1, . . . , 4 are chosen from the interval [0, 1] and the total sum

(2)
4∑

i=1

pi = 1.

For the purpose of the example, the values pi, i = 1, . . . , 4 are determined as:
p1 = 0.45, p2 = 0.25, p3 = 0.15 and p4 = 0.15. Table 1 contains information
about assignments of difficulty levels of each lesson of the course Selected Topics of
Number Theory. First two columns are related to the lesson label (in the graph)
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and lesson name. The next four columns contain values related to the factors
I–IV. Last column, named w(L) contains the value of difficulty, calculated by the
formula (1).

No. Lesson Name f1 f2 f3 f4 w(L)

1 Numeral systems 3 4 3 5 35.5
2 Divisibility 10 2 10 8 77
3 Mersenne prime numbers 3 4 2 3 31
4 Natural numbers 6 2 4 10 53
5 Rational and irrational numbers 6 2 4 8 50
6 Algebraic and trans. numbers 6 4 4 8 55
7 Least common multiple 5 1 6 10 49
8 Greatest common divisor 5 1 6 10 49
9 Coprime numbers 3 4 2 2 29.5
10 Prime numbers 10 4 10 10 85
11 Perfect numbers 5 2 3 8 44
12 Congruences 10 6 10 8 87
13 Chinese remainder theorem 6 4 2 3 44.5
14 Systems of congruences 6 6 4 4 54
15 Euclidean algorithm for comp. GCD 2 1 2 5 22
16 Sieve of Eratosthenes 2 1 2 5 22
17 The greatest prime number 2 5 2 6 33.5
18 The greatest perfect number 2 5 2 6 33.5
19 Linear congruences 6 4 4 3 47.5
20 Diophantine equation 6 4 6 6 55
21 Fundamental theorem of arithmetic 6 4 6 8 58
22 The appl. of Euler’s theorem in Crypt. 6 4 4 3 47.5
23 The appl. of Number Theory in Crypt. 6 4 6 3 50.5
24 The number of prime numbers 6 4 2 3 44.5
25 Fermat numbers 3 4 2 3 31
26 Fermat’s little theorem 3 4 2 6 35.5
27 Pythagorean triple 3 1 2 5 26.5
28 Congruence of squares 4 1 2 3 28
29 Euler’s theorem 2 1 2 5 22
30 Pseudoprime numbers 3 4 2 2 29.5
31 Distribution of prime numbers 6 4 2 3 44.5
32 Last Fermats theorem 6 5 3 6 53

Table 1. The assignment of difficulty levels of lessons of the example course
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From Table 1, it is obvious that values of all factors for each lesson are chosen
from the interval [0, 10] and because of (2), it can be easily shown that for each
lesson L, the value w(L) calculated by (1) is scaled into the interval [0, 100].

The optimal solution obtained by total enumeration algorithm is 0.5, and one
optimal partition is:

V1 = {1, 2, 3, 4, 5, 6, 10, 11, 13, 16, 21, 22, 24, 29, 31}
V2 = {7, 8, 9, 12, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30, 32}

It can easily be calculated that w(V1) = 713.5 and w(V2) = 714.

Fig. 3. Graph interpretation (left) and the solution of the example Course (right)

In Figure 3 (left), graph interpretation of the course Selected Topics of Number
Theory is shown. At the right side of the Figure 1, edges belonging to the subgraph
induced by V1 are thicker, while edges belonging to the subgraph induced by V2 are
left in normal size. Edges between two subgraphs are dotted.

4. Methods for solving MBCP

The MBCP is NP hard so any deterministic algorithm can not solve the prob-
lem in polynomial time. So, exact methods for solving this problem can be only
used for small scale instances because the execution time of such kind of algorithms
exponentially increases with the problem dimensions. For larger instances (contain-
ing hundreds or thousands of vertices), the only way to achieve quality results is to
use some heuristic methods.

This section describes one exact (total enumeration approach) and two heuris-
tic algorithms: greedy algorithm and genetic algorithm (GA), for solving this prob-
lem.

4.1. Total enumeration algorithm
The total enumeration algorithm creates and evaluates every possible solution.

This fact guarantee that optimal solution will be found when algorithm is finished.
At the other hand, total enumeration algorithm is mostly unusable for real-world
problems due to time and memory limitations. So this method is only used for
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solving small scale instances and probably, with some adoptions and restrictions,
for verifying results achieved by other methods.

For the given graph G = (V, E), each potential solution of the MBCP can
be represented as a binary array x with the length |V |. The elements of the array
correspond to vertices, indicating in which of two subsets of V vertices are arranged,
i.e. i ∈ V1 if xi = 1 and i ∈ V2 if xi = 0. It is evident that each partition
(potential solution of total enumeration algorithm) corresponds to one sequence of
the length |V | with the elements from {0, 1}. Since the total number of sequences
of |V | elements is 2|V | the total enumeration algorithm has to analyze total of 2|V |

potential solutions. This fact proves that this algorithm can not be used for larger
graphs.

The pseudo-code of the total enumeration algorithm for solving MBCP is
shown in Figure 4.

2. Construct all partitions (V1, V2) of set of vertices V .

1. Initialize current best solution bs := w(V ).

3. For each partition (V1, V2) do

4. Return bs.

If both subgraphs induced by V1 and V2 are connected

then

calculate the weights w(V1) and w(V2)

calculate the difference d = |w(V1)− w(V2)|

if d < bs then bs := d

Fig. 4. The total enumeration algorithm

At the beginning of the algorithm, current best solution bs is initialized as the
maximum possible value w(V ). For each partition, the algorithm firstly investigates
if both subgraphs are connected and if so, the difference d between the sums of
weights in two components is calculated. If that difference is less than current best
solution, the variable bs is assigned to that value d. The algorithm stops after all
possible solutions are analyzed and the variable bs contain the optimal value.

Example 3. Suppose that input graph is the same as in Example 1. The
total enumeration algorithm has to analyze total of 26 = 64 binary arrays of the
length 6. Each array corresponds to one potential solution. For example, the
array 100100 corresponds to the partition {1, 4} and {2, 3, 5, 6} and this partition
induces unconnected components, so it is discarded. The optimal solution given in
the Example 1 is represented as 111000.

4.2. Greedy algorithm for solving MBCP
A greedy algorithm is a heuristic method for solving the problem by making the

locally optimal choice at each stage, with the hope of finding the global optimum.
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Greedy algorithms do not always yield optimal solutions, but could be useful for
obtaining starting feasible solutions or solutions which quality can be determined
by some other techniques.

In the case of MBCP, presented greedy algorithm is based on the block-balance
algorithm from [1].

Let G = (V,E) be the graph. The algorithm starts with the connected parti-
tion (V1, V2), such that V1 contains only the single vertex with the maximal weight.
During the iteration process, the algorithm looks for a vertex u of V2, such that
both V1 ∪ {u} and V2 \ {u} are connected.

Among all these vertices, the one with the minimal weight is chosen. The
algorithm finishes when adding a new vertex to V1 can not anymore increase the
balance of the partition. The pseudo-code is shown in Figure 5.

2. Set V1 := {v1}, V2 := V \ {v1}.

1. Sort vertices from V in such a way that w(v1) ≥ w(v2) ≥ ... ≥ w(vn).

3. If w(V1) ≥
1

2
w(V ) then goto Step 7 else goto Step 4.

4. Form the set V0 = {u ∈ V2| (V1 ∪ {u}, V2 \ {u}) is a connected partition for G}.

5. Choose u ∈ V0 such that w(u) = minv∈V0
w(v).

then V1 := V1 ∪ {u}, V2 := V2 \ {u}, goto Step 3

else goto Step 7.

7. Return (V1, V2).

6. If w(u) < w(V )− 2w(V1)

Fig. 5. The greedy algorithm for solving MBCP

Example 4. Let us consider the graph shown in the Figure 6.

Fig. 6. The graph used for illustrating the greedy algorithm

The vertex 4 is the one with the highest weight 8. So, the starting partition
is (V1, V2) = ({4}, {1, 2, 3, 5, 6}). In the next step, the set V0 is formed, and V0 =
{3, 5}. The vertex 5 is chosen (the vertex with minimal weight 2). The condition
in the step 6 of the algorithm is satisfied and the sets V1 and V2 are updated:
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(V1, V2) = ({4, 5}, {1, 2, 3, 6}). In the next iteration of the algorithm, the set V0 is
formed again, and V0 = {3, 6}. The vertex 6 is chosen as the vertex with minimal
weight (3). The condition from the step 6 of the algorithm is satisfied again:
3 < 25− 2 · (8 + 2), and the partition is updated: (V1, V2) = ({4, 5, 6}, {1, 2, 3}). In
the next iteration, the set V0 is formed V0 = {1, 3}. The vertex 1 is chosen, but the
condition from the step 6 of the algorithm is not satisfied, because the right side of
the inequality is negative (2w(V1) = 2 · 13 = 26 > w(V ) = 25). The algorithm is
finished and the partition (V1, V2) = ({4, 5, 6}, {1, 2, 3}) is the result. It is obvious
that in this case the greedy algorithm achieves the optimal solution.

4.3. Genetic algorithms (GA) for solving MBCP
Genetic algorithms are complex and adaptive algorithms usually used in solv-

ing robust optimization problems. They involve working with population of indi-
viduals where each individual represents one (not necessary feasible) solution. In
the iterative process, the population is evolving in a way that old individuals are
changing to new, potentially the better ones. Each individual is assigned a value
called fitness, which is used for comparing the individuals, according to the quality
of the corresponding solution. During the iteration process, good individuals are
selected to (re)produce better ones, while applying genetic operators crossover and
mutation. The detailed description of GA is out of the scope of this paper and can
be found in [8].

In this section, the GA for solving MBCP described in [9] is presented. The
representation of individuals is similar as it is described in the section related to
total enumeration algorithm. Each individual is represented by the vector x of |V |
binary genes xi ∈ {0, 1}, i = 1, . . . , |V |. Each gene is corresponding to one vertex,
indicating the components of V in which the vertex is arranged, i.e. i ∈ V1 if xi = 1
and i ∈ V2 if xi = 0.

Certain problems can arise from this representation, because unconnected sub-
graphs can appear. For overcoming these situations, the GA uses penalty function.
The penalty function calculates the number of connected components for each sub-
graph. If ncc1(ind) and nnc2(ind) denote numbers of connected components in
the first and second subgraphs of the individual ind and max1 and max2 denote
maximal weights of vertices in the first and the second subgraphs, then the penalty
function is calculated as follows:
(3) Pen Fun(ind) = (ncc2(ind)− 1) ·max1 + (ncc1(ind)− 1) ·max2.

So, the objective value of the individual ind, corresponding to the partition (V1, V2)
is calculated as
(4) objective(ind) = |w(V1)− w(V2)|+ Pen Fun(ind).
From (3) it is obvious that if both subgraphs are connected, then the penalty
function is equal to 0, because ncc1 = ncc2 = 1 and in that case, the penalty
function has no influence on the objective value (4).

The GA uses modified mutation operator including the concept of frozen genes,
standard one-point crossover and fine-grained tournament selection with the value
of Ftour = 5.4.
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Example 5. Let us again consider the graph shown in the Example 1 and
two individuals corresponding to encoding 100100 and 111000. As it is already
mentioned in the Example 1, the first encoding corresponds to the partition {1, 4}
and {2, 3, 5, 6} and the sets V1 and V2 induces graphs with 2 connected components
each. The penalty function is calculated as

(5) Pen Fun(′100100′) = (2− 1) · 8 + (2− 1) · 5 = 13.

As we can see, although the balance of the individual is best possible, the penalty
function significantly increases the objective function because of the unconnected
components. For this individual, objective value calculated by (4) has the value 13.
The objective value of the individual represented by the array ’111000’ correspond-
ing to optimal solution is equal to 2.

5. Conclusions

In this paper the Maximally balanced connected partition problem in graphs
is presented. MBCP belong to a wide class of graph partitioning problems and
has a lot of applications in science, technical fields and social issues. In this paper,
an educational problem of organizing course lessons into two connected balanced
components is analyzed in details. The criteria for determining the difficulty of
lesson are presented and according to those criteria, partition of the course Selected
Topics of Number Theory is constructed.

MBCP is an NP hard problem, so no deterministic algorithm can solve it in
polynomial time. Several algorithms for solving this problem are developed and one
exact and two heuristic algorithms are presented in this paper: total enumeration
algorithm, greedy algorithm and genetic algorithm.

This research can be extended by applying the suggested system for deter-
mining difficulties of lessons to other mathematical courses. Also, the criteria for
determining difficulties of lessons can be extended by involving additional factors
influencing on lessons difficulty.
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