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Abstract. In this article we discuss limits of composite functions in the general
setting of topological spaces. We include here some of its technical applications.
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0. Introduction

Given x0 ∈ R, and functions f and g such that limx→x0 g(x) = y0 and
limy→y0 f(y) exists, is it true that limx→x0 f(g(x)) always exists and equals
limy→y0 f(y)? We can immediately check that neither limx→0 f(x sin(1/x)) = 1
nor limx→0 f(g(x)) = 1 if

f(y) :=
{ sin y

y if y 6= 0

0 if y = 0

and g(x) := 0. Thus, the answer to the question above is negative since, as shown
by these examples, we have a case in which either limx→x0 f(g(x)) does not exist
or it exists but does not equal limy→y0 f(y).

However, it is correct to infer limx→0 f(x sin(1/x)) = 1 if

f(y) :=
{ sin y

y if y 6= 0

1 if y = 0

since we know, by the continuity of f at 0,

lim
x→0

f(x sin(1/x)) = f( lim
x→0

x sin(1/x)) = f(0) = 1.

Apart from that, interestingly, we may correctly deduce from limy→0(sin y)/y = 1
that

lim
x→0

sin(x sin(1/x))
x sin(1/x)

= 1,

and
lim
x→0

f(g(x)) = 1

if

f(y) :=
{ sin y

y if y 6= 0

0 if y = 0
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and g(x) := x sin x, but what valid argument allows us to use this substitution
method? Does putting the condition that f is not defined at y0 (in addition to the
conditions given) implies that the limit of the composition exists? Instead of the
well-known continuity condition of f , is there any other additional condition, that
implies the existence of limit?

1. The proposition and examples

The proposition below simply provides answers to the questions above. In fact,
it is a particular version of Theorem 1 in [3]. We shall discuss and prove its general
version in the next section. We will find in the sequel that the following notions are
beneficial. We say that a function f : Df → R, Df ⊆ R, is eventually distinct from
y0 towards x0 on A ⊆ Df if there exists a neighborhood N of x0 such that for all
x ∈ N ∩A \ {x0}, f(x) 6= y0; otherwise we say that f frequently touches y0 towards
x0, i.e., there exists a sequence (xn) in A \ {x0} such that xn → x0 and f(xn) = y0

for all n. The function f(x) := x sin x, for instance, is eventually distinct from 0
towards 0, while the function g(x) := x sin(1/x) frequently touches 0 towards 0. In
fact, f(x) 6= 0 for all x ∈ (−π, π), and if xn := 1

nπ , then xn → 0 and g(xn) = 0 for
all n.

Proposition 1. Let f and g be real-valued functions defined respectively on
subsets Df and Dg of R, x0 be a limit point of the domain Df◦g of f ◦ g, and y0

is a limit point of Df . Suppose that limx→x0 g(x) = y0 and limy→y0 f(y) exist.
Then limx→x0 f(g(x)) exists and equals limy→y0 f(y) if and only if, either one of
the following conditions is satisfied:
(i) f is continuous at y0;
(ii) y0 /∈ Df ;
(iii) g is eventually distinct from y0 towards x0 on Df◦g.

As an illustration, let us consider each of the following pairs of f and g:

(a) f(y) :=
{ sin y

y if y 6= 0

1 if y = 0
and g(x) := x sin(1/x)’

(b) f(y) := sin y
y and g(x) := x sin(1/x);

(c) f(y) :=
{ sin y

y if y 6= 0

0 if y = 0
and g(x) := x sin x;

(d) f(y) :=
{ sin y

y if y 6= 0

0 if y = 0
and g(x) := x sin(1/x);

(e) f(y) :=
{ sin y

y if y 6= 0

0 if y = 0
and g(x) := 0.

Notice that for each pair of f and g, both limx→0 g(x) and limy→0 f(y) exist.
In particular, in (a), f is continuous at 0 = limx→0 x sin(1/x); in (b), f is not
defined at 0; and in (c), g is eventually distinct from 0 toward 0. Thus, in view of
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Proposition 1, for each pair of f and g in (a), (b), and (c), limx→0 f(g(x)) exists
and equals limy→0 f(y); while, since both in (d) and (e), f is defined at 0, f is
not continuous at 0, and g frequently touches 0 towards 0, it follows that either
limx→0 f(g(x)) does not exist (case (d)) or limx→0 f(g(x)) exists but does not equal
limy→0 f(y) (case (e)).

2. A generalization and a proof

Here we generalize Proposition 1 in the general setting of topological spaces.
This generalized version, consequently, has wider and more general forms of ap-
plications than both Proposition 1 and Theorem 1 of [3] do, particularly in parts
where functions on metric spaces and topological rings are involved. We begin
with the definition of a limit of a function f at a point x0 which, as usual, we write
limx→x0 f(x).

Definition 2. Let X and Y be topological spaces, where Y is Hausdorff. Let
A ⊆ X, x0 be a limit point of A, y0 ∈ Y , and f : A → Y be a function. We write
limx→x0 f(x) = y0 if, for every neighborhood W of y0, there exists a neighborhood
V of x0 such that f(V ∩A \ {x0}) ⊆ W .

Notice that the condition Y to be Hausdorff guarantee that limx→x0 f(x) has
at most one value, as we are aware that in a non-Hausdorff space two points might
share the same neighborhood system. Recall that f is continuous at x0 ∈ Df if,
for every neighborhood W of f(x0), there exists a neighborhood V of x0 such that
f(V ∩Df ) ⊆ W or equivalently, by Definition 2, limx→x0 f(x) = f(x0). The notion
of “eventually distinct” and “frequently touching” are defined in the same way as
those in the first section, except that here we use the concept of a net instead of a
sequence. These notions also apply to nets in the obvious way.

Proposition 3. Let X, Y , and Z be topological spaces, with Y and Z being
Hausdorff. Let f be a Z-valued function on Df ⊆ Y , and g be a Y -valued function
on Dg ⊆ X. Assume that Rg∩Df 6= ∅. Let x0 be a limit point of Df◦g, and y0 ∈ Y
is a limit point of Df . Suppose that limx→x0 g(x) = y0 and limy→y0 f(y) exists.
Then limx→x0 f(g(x)) exists and equals limy→y0 f(y) if and only if, either one of
the following conditions is satisfied:
(i) f is continuous at y0;
(ii) y0 /∈ Df ;
(iii) g is eventually distinct from y0 towards x0 on Df◦g.

Proof. Without loss of generality we can assume that Rg ⊆ Df and Dg = X,
and so Df◦g = Dg = X. Here we shall prove it using Definition 2. For part (=⇒),
assume that neither (i) nor (ii) hold, that is y0 ∈ Df and f is not continuous at
y0. We wish to show that (iii) holds, i.e., g is eventually distinct from y0 towards
x0. Suppose that g frequently touches y0 towards x0. Let L := limx→x0 f(g(x)) =
limy→y0 f(y). Since f is not continuous at y0, it follows that L 6= f(y0). As
Z is Hausdorff, we can choose some neighborhoods W1 and W2 of L and f(y0)
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respectively such that W1 ∩ W2 = ∅. Then, there exists a neighborhood U1 of
x0 such that (f ◦ g)(U1 \ {x0}) ⊆ W1. From the assumption that f frequently
touches y0, there exists x1 ∈ U1 \ {x0} such that g(x1) = y0, and so (f ◦ g)(x1) =
f(g(x1)) = f(y0) ⊆ W2. Therefore (f ◦ g)(x1) ∈ W1 ∩W2, which contradicts the
fact that W1 ∩W2 = ∅. Hence (iii) holds.

For part (⇐=), note first that (ii) implies (iii), since if y0 /∈ Df , then for every
x ∈ Df◦g, g(x) 6= y0. Then, we only need to consider (i) and (iii). Suppose that (i)
holds, that is f is continuous at y0. Let W be a neighborhood of f(y0). Then there
exists a neighborhood V of y0 such that f(V ∩Df ) ⊆ W . Since limx→x0 g(x) = y0,
there exists a neighborhood U of x0 such that g(U \ {x0}) ⊆ V ∩ Df , and so
f(g(U \ {x0})) ⊆ f(V ∩ Df ) ⊆ W . Therefore limx→x0 f(g(x)) exists and equals
f(y0).

Suppose now that (iii) holds. Let W be any neighborhood of L := limy→y0 f(y).
Then there exists a neighborhood V of y0 such that

(1) f(V ∩Df \ {y0}) ⊆ W.

As g is eventually distinct from y0, choose a neighborhood U1 of x0 such that for
all x ∈ U1 \ {x0}, g(x) 6= y0, that is

(2) y0 /∈ g(U1 \ {x0}).
Since limx→x0 g(x) = y0, there exists a neighborhood U2 of x0 such that

(3) g(U2 \ {x0}) ⊆ V ∩Df .

Now set a neighborhood U := U1 ∩ U2. Then, it follows from (2) that g(U \ {x0})
does not contain y0, and so by (3), g(U \ {x0}) ⊆ V ∩ Df \ {y0}, and hence
f(g(U \{x0})) ⊆ f(V ∩Df \{y0}). It then follows from (1) that f(g(U \{x0})) ⊆ W .
Thus limx→x0 f(g(x)) exists with the limit L.

We will need the convenient fact below as it enables us to prove statements
about limits in the language of nets (e.g., using this fact, we may want to exhibit a
proof of Proposition 3 in the language of nets, rather than in that of neighborhoods
as above). If {Uα | α ∈ ∆x0} is the neighborhood system at a point x0, then “≥”
directs the index set ∆x0 where, for α, β ∈ ∆x0 , α ≥ β if and only if Uα ⊆ Uβ .
We write (xα)α∈∆x0

to indicate a net whose directed set is ∆x0 , and write (xα) to
indicate a net with a non-specified directed set. If a net (xα) converges to a point
x0, we write xα → x0.

Fact 4. Let X and Y be topological spaces, where Y is Hausdorff. Let A ⊆ X,
x0 be a limit point of A, y0 ∈ Y , and f : A → Y be a function. Then the following
statements are equivalent:
(i) limx→x0 f(x) = y0;
(ii) For every net (xα) in A \ {x0} such that xα → x0, there exists a subnet (xαβ

)
such that f(xαβ

) → y0;
(iii) For every net (xα) in A \ {x0} such that xα → x0, f(xα) → y0.
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Proof. For part ((i) =⇒ (ii)), let (xα) be any net in A\{x0} such that xα → x0.
Let W be any neighborhood W of y0. By (i), there exists a neighborhood V of x0

such that f(V ∩ A \ {x0}) ⊆ W . Since xα → x0, it follows that xα is eventually
in V ∩ A \ {x0}, and so f(xα) is eventually in f(V ∩ A \ {x0}) and hence in W .
Therefore f(xα) → y0, where (f(xα)) is a subnet of itself.

For part ((ii) =⇒ (iii)), we shall prove its contrapositive. Suppose that (iii)
does not hold. Then, there exists a net (xα) in A \ {x0} and a neighborhood W
of y0 such that xα → x0 and (f(xα)) is not eventually in W . Axiom of choice,
therefore, allows us to have a subnet (xβα

) such that f(xβα
) /∈ W for all βα. Thus,

we have a net (xβα) that converges to x0 and has no subnet whose image under f
converges to y0, that is (ii) does not hold.

For part ((iii) =⇒ (i)), as above, we shall prove the contrapositive. Suppose
(i) does not hold. Then there exists a neighborhood W of y0 such that for any
neighborhood V of x0, f(V ∩A\{x0}) "W . By Axiom of choice, there exists a net
(xα)α∈∆x0

in A\{x0} such that for every neighborhood Vα of x0, xα ∈ Vα∩A\{x0}
and f(xα) /∈ W . Since (xα)α∈∆x0

is eventually in any neighborhood of x0, it follows
that xα → x0, while f(xα) 9 y0 as f(xα) /∈ W for all α, so that (iii) does not
hold.

3. Applications

Below we give three examples of the applications. One application will be an
example supplementing the illustration in Section 1, with which we show the exis-
tence of the limit of a function, and at the same time compute it, using a thorough
substitution method based on Proposition 1. The other two are concerned with
parts of the proof arguments of the inverse function theorem and the derivative of
composite function theorem; each of which works for two general underlying spaces:
one using Proposition 3, while the other using Proposition 3 and a proof-method
by cases in terms of “eventually distinct” and “frequently touching” concepts.

Substitution method

Knowing that limx→0(sinx)/x = 1, we shall show the existence of, and at the
same time, compute

lim
x→1

arcsin(x− 1)
x− 1

.

Set f(x) := x/ sin x and g(x) := arcsin(x − 1). Then Df◦g = [0, 2] \ {1}, and 1
is a limit point of Df◦g. Since sin function is one-to-one on (−π/2, π/2) and is
continuous at 0 = arcsin 0, it follows that its inverse arcsin is also continuous at
0, and therefore limx→1 g(x) = arcsin(limx→1(x − 1)) = arcsin 0 = 0. We observe
that limx→0 f(x) = 1/(limx→0(sinx)/x) = 1/1 = 1. Since f is not defined at
0 = limx→1 g(x), it follows from the Proposition 1 that limx→1 f(g(x)) exists, and
is equal to limx→0 f(x) = 1. Thus

lim
x→1

arcsin(x− 1)
x− 1

= lim
x→1

arcsin(x− 1)
sin(arcsin(x− 1))

= lim
x→1

f(g(x)) = 1.



38 H. Tandra

In the next applications we will need the following lemma whose proof is also
a direct application of Proposition 3.

Lemma 5. Let X be a topological space and Y is a Hausdorff topological group.
Let f and g be Y -valued functions on A ⊆ X. Let x0 be a limit point of A.
(i) If both limx→x0 f(x) and limx→x0 g(x) exist, then limx→x0(f(x) · g(x)) exists,

and
lim

x→x0
(f(x) · g(x)) = lim

x→x0
f(x) · lim

x→x0
g(x).

(ii) If limx→x0 f(x) exists, then limx→x0(f(x))−1 exists, and

lim
x→x0

(f(x))−1 = ( lim
x→x0

f(x))−1.

Proof. For (i), consider the functions π : x 7→ (f(x), g(x)), x ∈ A,

µ : (y1, y2) 7→ y1 · y2, (y1, y2) ∈ Y × Y

and
f · g : x 7→ f(x) · g(x)

from which we have µ◦π = f ·g. Let L := limx→x0 f(x) and M := limx→x0 g(x). We
shall show that limx→x0(µ ◦π)(x) exists and equals L ·M . Recall that convergence
in the product topology is pointwise convergence, so that

(4) lim
x→x0

π(x) = (L,M).

Since µ is continuous,

(5) lim
(y1,y2)→(L,M)

µ((y1, y2)) = µ((L,M)) = L ·M.

By noting (4), (5) and the continuity of µ, it then follows from Proposition 3 that
limx→x0 µ(π(x)) exists and equals lim(y1,y2)→(L,M) µ((y1, y2)) = L ·M .

For (ii), consider the functions ι : y 7→ y−1, y ∈ Y , and

(f)−1 : x 7→ (f(x))−1, x ∈ A

(we distinguish (f)−1 from f−1) from which we have ι ◦ f = (f)−1. Let

(6) K := lim
x→x0

f(x).

We shall show that limx→x0(ι ◦ f)(x) = K−1. But

(7) lim
y→K

ι(y) = ι(K) = K−1

since ι is continuous, and hence by noting (6), (7) and the continuity of ι, it follows
from Proposition 3 that limx→x0 ι(f(x)) exists and equals limy→K ι(y) = K−1.
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Inverse function theorem
Here we shall prove parts of the proof arguments of the theorem (where Propo-

sition 3 is used) for each underlying Banach space and topological field. We write
(DG)a for the (Frechet) derivative of G at a.

Fact 6. Suppose that X and Y are Banach spaces, W is an open set of
X, x0 ∈ W , and F : W → X is a function that is differentiable at x0 with
(DF )x0 is invertible. If F is one-to-one, then F−1 is differentiable at y0 with
(DF−1)y0 = (DF )−1

x0
.

Proof. Write, for convenience, D := (DF )x0 . Let

ϕ(y) :=
‖F−1(y)− F−1(y0)−D−1(y − y0)‖

‖y − y0‖ , y ∈ F (W ) \ {y0}

and

ω(x) =
‖x− x0 −D−1(F (x)− F (x0))‖

‖F (x)− F (x0)‖ , x ∈ W \ {x0}.

Then ω ◦ F−1 = ϕ. We shall show that limy→y0(ω ◦ F−1)(y) = 0. First, write

(8) ω(x) :=
‖D−1(D(x− x0)− (F (x)− F (x0)))‖

‖x− x0‖ · ‖x− x0‖
‖F (x)− F (x0)‖ .

Since F is differentiable at x0, there exists a neighborhood N of x0 such that for
all x ∈ N \ {x0},

‖F (x)− F (x0)−D(x− x0)‖
‖x− x0‖ <

1
2‖D−1‖

which implies that

‖F (x)− F (x0)‖
‖x− x0‖ >

‖D(x− x0)‖
‖x− x0‖ − 1

2‖D−1‖
where ‖D(x−x0)‖/‖x−x0‖ = ‖D(x)−D(x0)‖/‖D−1(D(x)−D(x0))‖ > 1/‖D−1‖,
so that ‖x− x0‖/‖F (x)− F (x0)‖ is bounded on N \ {x0}. This implies that F−1

is continuous at y0, that is

(9) lim
y→y0

F−1(y) = F−1(y0) = x0.

By (8) and the fact that D is the derivative of F at x0, this also implies that

(10) lim
x→x0

ω(x) = 0.

Noting (10), (9), and the fact that F−1 is eventually distinct from F−1(y0), it
follows from Proposition 3 that limy→y0 ω(F−1(y)) = limx→x0 ω(x) = 0.

Fact 7. Let X be a Hausdorff topological field, W ⊆ X is open, and x0 ∈ W
is a limit point. Let f : W → X be a function with

(11) f ′(x0) := lim
x→x0

(x− x0)−1(f(x)− f(x0))
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exists and is not 0. If f is one-to-one and f−1 : f(W ) → W is continuous at
y0 := f(x0), then

f ′(y0) := lim
y→y0

(y − y0)−1(f−1(y)− f−1(y0))

exists and equals (f ′(x0))−1.
Proof. Let

(12) F (x) := (x− x0)−1(f(x)− f(x0)), x ∈ W \ {x0}.
Since for y ∈ f(W ) \ {y0},

F (f−1(y)) = (f−1(y)− f−1(y0))−1(y − y0)

we have

(13) (F (f−1(y)))−1 = (y − y0)−1(f−1(y)− f−1(y0)).

We shall prove that limy→y0(F (f−1(y)))−1 exists and equals (limx→x0 F (x))−1.
Since f−1 is continuous at y0 = f(x0), limy→y0 f−1(y) = f−1(y0) = x0. Since
limx→ F (x) exists, and f−1 is eventually distinct from f−1(y0), it follows from
Proposition 3 that limy→y0 F (f−1(y)) exists and

(14) lim
y→y0

F (f−1(y)) = lim
x→x0

F (x).

Since limx→ F (x) 6= 0, it follows from Lemma 5 that limy→y0(F (f−1(y)))−1 exists
and equals (limx→x0 F (x))−1.

The derivative of a composite function
Here we shall prove the existence and the formula of the derivative of a com-

posite function, both on Banach spaces and topological fields.
Fact 8. Suppose that X, Y and Z are Banach spaces. Let G : X → Y and

F : Y → Z be functions such that G is differentiable at x0 ∈ X and F differentiable
at G(x0). Then F◦G is differentiable at x0 with (D(F◦G))x0 = (DF )G(x0)◦(DG)x0 .

Proof. Let for x ∈ X \ {x0},

ψ(x) :=
(F ◦G)(x)− (F ◦G)(x0)− ((DF )G(x0) ◦ (DG)x0)(x− x0)

‖x− x0‖ .

We shall prove that limx→x0 ‖ψ(x)‖ = 0 in view of Fact 4, where we use sequences
instead of general nets, since every Banach space is a first-countable topological
space. For G(x) 6= G(x0), write

ψ1(x) :=
(F ◦G)(x)− (F ◦G)(x0)− (DF )G(x0)(G(x)−G(x0))

‖G(x)−G(x0)‖
and for x ∈ X \ {x0},

ψ2(x) :=
G(x)−G(x0)− (DG)x0(x− x0)

‖x− x0‖ .
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Then, it can immediately be checked that either

(15) ψ(x) = ‖G(x)−G(x0)‖ψ1(x) + (DF )G(x0)(ψ2(x))

if G(x) 6= G(x0), or

(16) ψ(x) = (DF )G(x0)(ψ2(x))

if G(x) = G(x0). Let xn be any sequence in X \ {x0} such that x → x0. Then,
either (G(xn)) is eventually distinct from G(x0) or it frequently touches G(x0).
In the former case, since F is differentiable at G(x0) and G is differentiable at
x0, it follows that both (‖ψ1(xn)‖) and (‖ψ2(xn)‖) converge to 0, and hence (15)
implies that ‖ψ(xn)‖ → 0. In the latter case, we have a subsequence (xnk

) such
that G(xnk

) = G(x0) for all k, so that by (16), ‖ψ(xnk
)‖ → 0. This completes the

proof.
In the following fact we have the notion of the derivative of a function f at

x0 as formulated in (11), and as usual, when such a value is defined (or the limit
exists) at x0, we say that f is differentiable at x0.

Fact 9. Let X be a Hausdorff topological field, and x0 ∈ X. If f and g are
X-valued functions on X such that g is differentiable at x0 and f is differentiable
at g(x0), then f ◦ g is differentiable at x0 and

(17) (f ◦ g)′(x0) = f ′(g(x0)) · g′(x0).

Proof. Let

H(x) := (x− x0)−1((f ◦ g)(x)− (f ◦ g)(x0)), x ∈ X \ {x0}
and

F (y) := (y − g(x0))−1(f(y)− f(g(x0)), y ∈ X \ {g(x0)}.
Then

(18) H(x) = F (g(x)) · (x− x0)−1 · (g(x)− g(x0))

for all x ∈ X \ {x0}, g(x) 6= g(x0). First, consider the case when g is even-
tually distinct from g(x0). By Proposition 3, limx→x0 F (g(x)) exists and equals
limy→y0 F (y) = f ′(g(x0)) as f is differentiable at g(x0), and hence by Lemma 5,
limx→x0 H(x) exists and equals f ′(g(x0)) ·g′(x0) as g is differentiable at x0, so that
(17) holds.

Now consider the case when g frequently touches g(x0), where we assert that
(17) holds by showing g′(x0) = 0 and (f ◦ g)′(x0) = limx→x0 H(x) = 0. But in this
case g′(x0) must be 0, since we have a net (xα) in X \ {x0} such that xα → x0

and g(xα) = g(x0) for all α, and that (xα − x0)−1(g(xα) − g(x0)) → g′(x0) as g
is differentiable at x0; so it remains to show that limx→x0 H(x) = 0. Let (x′α) be
any net in X \ {x0} such that x′α → x0. Then, either (g(x′α)) is eventually distinct
from g(x0) or it frequently touches g(x0). The former case, as the argument above,
implies that H(x′α) → f ′(g(x0)) · g′(x0) = 0 as g′(x0) = 0. In the latter case, we
have a subsequence (x′αβ

) such that g(x′αβ
) = g(x0) for all αβ , which implies that

H(x′αβ
) → 0, and this completes the proof.



42 H. Tandra

REFERENCES

[1] N. Bourbaki, Elements of Mathematics. General Topology, Hermann, Paris, 1966.

[2] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., New York, 1955.
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