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Abstract. In this article we present main notions and ideas of Morse theory
in two dimensions, adjusted to school teachers and their talented students. We count
numbers of critical points of different types and obtain interesting results about plane
curves, mountainous landscapes and planets. We also derive the Euler formula for
polyhedra.
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1. Introduction
Topology is a modern branch of mathematics that studies properties of spaces

invariant under continuous deformations. In contrast to geometry that is concerned
with metric properties of spaces, in topology the metric is irrelevant. In that
sense topological properties are more essential and describe more deeply qualitative
characteristics of spaces. For instance, from geometrical point of view a circle and
a square are quite different figures but they share some common properties as
dimension and both divide the plane into two parts. They can be transformed
into each other by continuous deformation. Transformations of this kind are called
homeomorphisms. They are the main topological equivalences of spaces and from
topological point of view homeomorphic spaces are the same. Topological properties
have wide applications in all areas of modern mathematics, as well as in physics,
computer science and even in economy. This makes topology the unique discipline
that reflects a unifying principle of modern mathematics. We present here one of
the most beautiful topological theories that influenced development of topology and
that is ever young and actual. This is Morse theory1. It is concerned with shapes
of spaces called manifolds and with critical points of real functions on them. The
unsurpassed exposition of the subject is the famous Milnor’s book [1], one of the
most cited books in mathematics. We start with three geometric problems referred
to as “pictures”.

Picture 1. Count the number of minima m and maxima M of a closed plane
curve γ in the general position without selfintersections. Are they always the same,
namely is it χ = M −m = 0?

1Marston Morse, 1892–1977, American mathematician, stated his theory in mid 30’s of the
last century.
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Picture 2. Given a mountainous landscapeM, count the number m of points
of minimal height (basins), the number M of points of maximal height (peaks) and
the number p of saddle points (passes). Calculate χ = m − p + M . Is it always
χ = 1 for every landscape?

Picture 3. Let Π be a convex polyhedron with T vertices, I edges and S
faces. The famous Euler formula says that χ = T − I + S = 2 for any convex
polyhedron Π. Check this for Platonic solids.

We see that all three pictures say something about the number χ that does
not depend on the metric shape of involved spaces. Hence they are topological
invariants in nature. We prove this in what follows, but let us first introduce the
main actors of Morse theory.

2. Critical points

We consider real functions of n variables f : Rn → R and for the beginning
we restrict ourselves to the cases when n = 1, 2. The nicest class of such functions,
called analytic functions, are those that can be expanded into power series of the
form

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·(1)

f(x, y) = a0 + (a11x + a12y) + (a21x
2 + 2a22xy + a23y

2) + a31x
3 + · · ·

They are generalization of polynomials, the simplest and the well-known class of
real functions.

Let f : R → R be an analytic function of the form (1). We say that f has a
critical point at the origin x = 0 if a1 = 0 in its series expansion. That critical
point is called degenerate if a2 = 0 and nondegenerate if a2 6= 0. These conditions
are equivalent to f ′(0) = f ′′(0) = 0 for degenerate and f ′(0) = 0, f ′′(0) 6= 0 for
nondegenerate critical point. Value of the function in the critical point a0 = f(0)
we call the critical value. The type of a critical point does not depend on the critical
value, so we may suppose that a0 = 0.

The main contribution to the behavior of function f near the nondegenerate
critical point comes from the second summand a2x

2. The type of the nondegenerate
critical point depends on the sign of the coefficient a2 in the way that if a2 > 0 it
is the local minimum and if a2 < 0 it is the local maximum of function f near the
origin.

We call a critical point stable if it cannot be destructed or new critical points
cannot be created by a small deformation of function f in its small neighborhood.
The degenerate critical point is not stable. For example, let a0 = a1 = a2 = 0 and
a3 > 0 in the series expansion of function f . Then function f near the origin looks
like the cubic line y = a3x

3. It can be slightly deformed by the small parameter
t 6= 0 to obtain y = a3x

3 + tx, which does not have critical points for t > 0
and has two critical points for t < 0 near the origin. This deformation is called
the creation or the destruction of the critical point. Unlike this situation, the
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nondegenerate critical point is stable. That is the reason why we are interested
only in nondegenerate critical points.

Definition. A function f with only nondegenerate critical points is called a
Morse function.

Now we can explain what we have meant by “the general position of the closed
curve γ” in Picture 1. The curve γ can be described by the equation ϕ(x, y) = 0.
If the function ϕ is analytic we say that γ is a smooth curve. Define the function
f : γ → R on the smooth curve γ by f(x, y) = y. Geometrically it measures the
height of point (x, y) ∈ γ according to y-axis. We call f the height function. We say
that the curve γ is in a general position if its height function is a Morse function.
The proof of equality of the number of local minima m and local maxima M follows
from the simple fact that any minimum has to be followed by a maximum and vice
versa.

We will now treat a reacher case of the dimension n = 2. Let f : R2 → R be
an analytic function of the form (2). Similarly as in the case of functions of one
variable we define the notion of (non)degenerate critical points and critical values
for functions of two variables. The origin (x, y) = (0, 0) is a critical point of function
f if a11 = a12 = 0 in the series expansion (2). For a reader who is familiar with
partial derivatives, this is equivalent to the condition

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

The value a0 = f(0, 0) of function f at the critical point is a critical value and
we may suppose that a0 = 0. We call noncritical values regular. The behavior of
function f near the critical point depends on the second term

q(x, y) = a21x
2 + 2a22xy + a23y

2

of its series expansion. This term is called the quadratic form (see [4] to learn more
about quadratic functions) associated to function f at the critical point. It can be
written in the form of matrix multiplication

q(x, y) = ( x y )
(

a21 a22

a22 a23

)(
x
y

)
.

The 2×2-matrix H =
(

a21 a22

a22 a23

)
is called the Hessian of function f in the critical

point. We recognize coefficients of the Hessian as the second partial derivatives of
function f ,

a21 =
∂2f

∂x2
(0, 0), a22 =

∂2f

∂x∂y
(0, 0), a23 =

∂2f

∂y2
(0, 0).

Let ∆ = detH = a21a23−a2
22 be the determinant of Hessian matrix. The quadratic

form q(x, y) is called degenerate if ∆ = 0 and nondegenerate if ∆ 6= 0. We distinct
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the character of the critical point by this rule. We can transform coordinates in a
small neighborhood of the nondegenerate critical point to get a quadratic form of
the Morse function f . This guaranties the following

Morse lemma. There is a transformation of coordinates (x, y) 7→ (X, Y ) in a
small neighborhood of a nondegenerate critical point after which the Morse function
f has a simple form

f(X, Y ) = ±X2 ± Y 2,

where signs depend on the Hessian matrix H.

As a consequence we see that the nondegenerate critical point is isolated. It is
the only critical point in some of its neighborhoods. The number of minuses λ in
the above presentation of function f in new coordinates (X,Y ) is called the index
of the critical point. The dependence of signs on the Hessian matrix geometrically
corresponds to the intuitive notion that the index λ is the number of independent
directions in which function f decreases. Consequently we have three types of
nondegenerate critical points of Morse functions of two variables: minimum for
λ = 0, saddle point for λ = 1 and maximum for λ = 2. They are depicted in
Figure 1.

Fig. 1

We introduce the notion of gradient flow lines of the Morse function f . At any
point of the domain we put a vector in the direction of the fastest growth of function
f with the magnitude equal to the slope of function f in that direction. Such
assignments of vectors to points of the domain we call the gradient field of function
f and denote by grad f . Stationary points of the gradient field, i.e. points where
it vanishes are exactly critical points of function f . Trajectories of the gradient
field are curves in the domain for which the tangent vector at each point is equal
to the gradient vector at that point. We call these trajectories gradient flow lines.
Through each nonstationary point the unique gradient flow line passes. Gradient
flow lines have another important characteristic. Define level sets of function f as
curves f(x, y) = c for different values of c. Gradient flow lines are perpendicular
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to level sets. We usually draw the opposite field − grad f and reverse directions
of flow lines. In Figure 1 we depicted gradient flow lines around critical points of
different indexes.

3. On hills and lakes2

We return now to Picture 2. The mountainous landscape M can be described
by an equation z = f(x, y) in the 3-space R3,

M = { (x, y, z) ∈ R3 | z = f(x, y), (x, y) ∈ D },
where D is some simple closed bounded plane domain, such that on its boundary
∂D function f takes the zero value f(x, y) = 0, (x, y) ∈ ∂D. We can imagine
the mountainous landscape M as an island in the plane ocean. In that vision the
boundary ∂D will be the coast of the island. We are looking at the height function
h : M → R defined by h(x, y, z) = z, (x, y, z) ∈ M which measures elevations of
island’s points with respect to the z-axis. We say that M is in a general position if
all critical points of the height function are nondegenerate and none of the critical
points belongs to the coast of the island. It means that we have only peaks, passes
and basins inside the island.

For reasons of simplicity of the proof we may suppose that all basins have the
same depth, all peaks have the same height and that all passes are on different
levels. This can be achieved by changing the function z = f(x, y) locally around
critical points with no effects on their types and total number. These local changes
of the landscape M are indicated in Figure 2.

Fig. 2

Then the height function h has the common minimal value µ at points of
minima, critical values α1 < · · · < αp at saddle points and the common maximal
value ν at points of maxima. Functions with these properties we call proper Morse
functions. Also suppose that the common depth of basins are above the ocean level,
i.e. µ > 0.

Define a level set Mt = h−1({t}) as the set of all points with elevations t. For
a regular value t, the connected components of the level set Mt are closed curves

2This is a paraphrase of the title of James Clark Maxwell’s article On hills and dales [2]
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without selfintersections3. For a critical value t, the connected components of level
set Mt are either isolated points (corresponding to maxima and minima) or closed
curves with double points (corresponding to saddle points). The sublevel region
M≤t is defined as the set of all points of the island M with the height at most t,

M≤t = {(x, y, z) ∈M|f(x, y) ≤ t}.
Similarly, the level sector M[a,b] is the set of all points with the height between the
given levels,

M[a,b] = {(x, y, z) ∈M|a ≤ f(x, y) ≤ b}.
We want to understand how these regions change when the parameter t increases.
The main tool needed for this analysis is provided by the following theorem.

Theorem 1. Suppose that a < b are real parameters such that there are no
critical values between a and b. Then the regions M≤a and M≤b have the same
shape, topologically speaking they are homeomorphic. Also, the level sector M[a,b]

is homeomorphic to the product Ma× [0, 1] which we call a band along the level set
Ma.

This means that the main changes of shapes of sublevel regionsM≤t may occur
only when the parameter t passes the critical values. For this reason we choose a
discrete set of values for the parameter

t : µ < t1 < α1 < t2 < α2 < · · · < αp−1 < tp < αp < tp+1 < ν

and look what is the effect on the sublevel regions

M≤t1 ⊂M≤t2 ⊂ · · · ⊂ M≤tp+1 .

It is obvious that M≤t = ∅ for t < 0 and M≤t = M for t > ν. M0 is the island’s
coast line ∂D. From Theorem 1 we have that the level sector M[0,t], for any t < µ,
is homeomorphic to the band along the coast line M0× [0, 1]. We may think about
this band as the island’s beach. What happens when t passes the critical value µ?
The region M≤t1 contains the island’s beach and m separate basins. We imagine
that these basins are filled with water and form m lakes on the island M.

From now on we think about connected components of regions M≤t that
are separated from the ocean as lakes and about connected components of sectors
M[t,ν] as hills. We are interested in numbers of lakes and hills when the parameter
t increases. By Theorem 1 these numbers could be changed only when t passes
through critical values. We take the case t = t1 as the start position: m lakes and
one hill.

How numbers of lakes and hills change after passing the critical value α1 at
the first saddle point? The answer is given by the following theorem.

Theorem 2. Suppose that a < b are real parameters such that there is only one
critical value between a and b corresponding to the saddle point. Then the region
M≤b is obtained from the region M≤a by attaching a band along its opposite sides.

3known as isohypses on geographic charts
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According to Theorem 2 the region M≤t2 is obtained from the region M≤t1

by attaching a band along its opposite sides. We distinguish four ways to attach a
band according to where its sides are attached. We collect all these ways into two
cases. The first case is when both sides are attached either on a single lake or on
the ocean. The second case is when they are attached on different lakes or one side
is attached to the ocean and the other one to some lake.

the first case the second case

Fig. 3

In the first case the number of lakes remains the same, but the number of hills
increases by one. In the second case the number of lakes decreases by one and the
number of hills remains the same. The same is true for any critical value αj and
the corresponding regions M≤tj and M≤tj+1 . Finally, we approach the last case
t = tp+1 as the final position: no lakes and M hills corresponding to M peaks. We
observe that the number of lakes decreases by m and the number of hills increases
by M − 1 moving from the start position t = t1 to the final position t = tp+1. We
conclude that there must be m + M − 1 attaching bands corresponding to saddle
points. Thus, we have proved the equality stated in Picture 2,

(3) m− p + M = 1.

4. Polyhedra

Now we address Picture 3. Let us consider the 2-dimensional sphere S2 and
Morse functions on it. We may imagine the surface of some planet P and a distance
function d : P → R from some of the interior points O of the planet P. Suppose
that d is a Morse function on the surface of P. This means that the planet P has
only basins, passes and peaks relative to function d. Let us choose the deepest
basins, the point on the surface of P where function d is approaching the absolute
minimal value, and surround it in a small neighborhood by water. We may think
about a water neighborhood of the deepest basin as an ocean on the planet P,
small one, but still an ocean. The rest of the planet P we will treat as the island.
Let m′, p and M be numbers of minima, saddles and maxima of function d on the
island. According to formula (3) we have that m′−p+M = 1. As we have only one
more critical point, namely the deepest basin in the ocean, we prove the following
relation between total numbers of critical points of function d on planet P:

(4) m− p + M = 2.
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A slightly different exposition of formulae (3) and (4) can be found in the
inspirational paper [3].

We are ready to prove the famous Euler formula for polyhedra (proved in more
geometrical manner in [5]). Let Π be a convex polyhedron with T vertices, I edges
and S faces. Suppose that there is an interior point O of polyhedron Π such that
all perpendiculars from O to any of faces end in interior points of faces. We may
treat polyhedron Π as some planet P and construct a distance function d from the
point O. The distance function d has minima at ends of perpendiculars to faces,
saddles at ends of perpendiculars to edges and maxima at vertices. According to
the formula (4) we get

(5) T − I + S = 2.

The other interesting way to prove Euler formula for polyhedra are based
on construction of discrete gradient field. Let Π be a convex polyhedron and
{F1, . . . , FS} be the set of barycenters of its faces, {E1, . . . , EI} be the set of
centers of its edges and {V1, . . . , VT } be the set of its vertices. To each vertex
put vectors towards centers of edges and barycenters of faces that are incidence to
the given vertex. Similarly, to centers of edges put vectors towards barycenters of
incidence faces. We obtain a directed graph on the surface of the polyhedron Π
which can be simply extended to a gradient field. That gradient field has maxima
at vertices, saddles at centers of edges and minima at barycenters of faces. By
equation (4) we obtain again relation (5).

Fig. 4. A discrete gradient field

5. Conclusion

Morse theory is a powerful tool for the study of surfaces and their higher
dimensional analogues called manifolds. Manifolds are spaces that locally look like
Euclidean spaces. Morse function on a manifold gives a way to describe how this
manifold is built from simple parts called handles. Morse theory and its analysis
of the evolution of level sets of Morse functions provides a rich source of ideas to
apply topology in many mathematical problems.

I am indebted to Professor Milosav Marjanović who introduced me to this
beautiful and powerful theory.
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