
THE TEACHING OF MATHEMATICS

2011, Vol. XIV, 2, pp. 87–96

A CONTRIBUTION TO THE DEVELOPMENT
OF FUNCTIONAL THINKING RELATED TO

CONVEXITY AND ONE-DIMENSIONAL MOTION

Miodrag Mateljević and Marek Svetlik
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Abstract. Mathematical concepts are defined precisely using the language of
the branch of mathematics to which they belong. But their meaning can be enriched
through different interpretations and those of them belonging to the real world situ-
ations, we call “vivid” mathematics. In contacts with Professor M. Marjanović, we
investigated a case of “vivid” mathematics in some earlier papers and we continue to
do so in this paper.

Suppose that a liquid (water) flow has a constant inflow rate and that a vessel has
the form of a surface of revolution, and suppose that this process begins at moment
t = 0 and ends at moment t = T . We study the dependence of the height h(t) of
the liquid level at the time t, which will be called the height filling function. It is
convex or concave depending on the way how the level of the liquid changes. This
vivid interpretation holds in general, namely we prove that given a strictly increasing
convex (concave) continuous function on [0, T ] satisfying certain conditions, there exists
a vessel such that its height filling function is equal to the given function. This is a
fact that seems to be new and we continue paying attention to it.

In this way, we hope that we are providing a matter that can serve as a moti-
vation and an illustration for a deeper understanding of basic concepts and ideas of
the differential and integral calculus. It can also serve for a further development of
functional thinking in teaching mathematics.

We also consider a more general concept of one-dimensional motion, including
changes in direction of motion and the difference between velocity and acceleration de-
fined by the position and the path as functions of time. We indicate how one can apply
this for studying the height filling function of a liquid flow, which can be considered
now as a one-dimensional motion of a liquid along the axis of rotation of the vessel.
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1. Characterization of monotony and convexity
by pouring liquid into a vessel

We will first consider the notions of speed and acceleration for one-dimensional
motion, as well as their relation with monotonous and convex functions, in the
example of pouring liquids into a vessel.

Let H > 0 and let a function r : [0,H] → R with the following properties be
given:

(r1) r is continuous on [0,H] and
(r2) r(x) > 0 for x 6= 0.
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Rotating the curve
cr = {(0, y) : y ∈ [0, r(0)]} ∪ {(x, r(x)) : x ∈ [0,H]}

about x-axis we get a surface σr. The surface we get in this way is called an
elementary surface of revolution, see Fig. 1.

Fig. 1

It is convenient to identify the inner “wall” of the vessel (and the whole vessel)
with σr. In this sense we will consider the vessel to be the part of the space
bounded by σr and the plane x = H, while the axis of rotation of the vessel will
be the rotation axis of surface σr. Function r (respectively the graph of r) will
be called the generatrix of surface σr. The vessels we get in this way are called
elementary rotation vessels.

Throughout this paper we assume that an elementary rotation vessel is placed
so that its rotation axis is in vertical position and liquid is pouring evenly through
the upper part so that the speed of change of the liquid volume is constant. Suppose
that this procedure begins at moment t = 0 and ends at a moment t = T .

Denote by h(t) the height of the liquid level at moment t. It can be shown
that the function h has the following properties (see [10, 11]):

(h1) h is strictly increasing and continuous on [0, T ],
(h2) h(0) = 0,
(h3a) h is continuously differentiable on [0, T ] and for every t ∈ [0, T ], h′(t) > 0

(if r(0) 6= 0),
or
(h3b) h is continuously differentiable on (0, T ], limt→0+ h′(t) = +∞ and for

every t ∈ (0, T ], h′(t) > 0 (if r(0) = 0).
Of course, at the ends of intervals we consider one side derivatives.
The class of all functions satisfying conditions (h1), (h2) and (h3a) or (h3b)

we call the class of height filling functions and denote it by H[0, T ].
If we specify that a liquid (water) flow has a constant inflow rate v0 into a

vessel (whose generatrix is r), we can express the first and second derivatives of the
corresponding function h in terms of r and v0:

(1) h′(t) =
v0

πr2(h(t))
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for t ∈ (0, T ] (t ∈ [0, T ], if r(0) 6= 0). Moreover, if we assume that the function r is
differentiable on (0, H), then we get

h′′(t) = −2v2
0

π2

r′(h(t))
r5(h(t))

,

for t ∈ (0, T ).
Using the last formula we can prove the following:
If r is increasing then r′ ≥ 0 and h′′ ≤ 0, that is h is concave on (0, T ).
If r is decreasing then r′ ≤ 0 and h′′ ≥ 0, that is h is convex on (0, T ).
If we do not specify otherwise, we consider functions which are time dependent.

Recall that it is convenient to consider liquid flow as a one-dimensional motion
of a liquid along the axis of rotation of the vessel and apply it for studying the
height filling function h. Denote by v instantaneous speed and by a instantaneous
acceleration of this motion. Note that v is the rate of change of liquid level h in the
vessel as a function of time (more precisely v(t) = h′(t)) and a is the rate of change
of v (more precisely a(t) = v′(t) = h′′(t)). It is clear that v is always positive.

If the generatrix of a vessel is a monotone increasing (respectively decreasing)
function, one can conclude that the increment of liquid level is decreasing (re-
spectively increasing) in the same interval of time ∆t. We leave to the interested
reader to give visual interpretation of this fact and to give detailed proof of the two
following propositions.

Proposition 1. If the generatrix of a vessel is a monotone increasing (respec-
tively decreasing) function then v is a monotone decreasing (respectively increasing)
function.

Proposition 2. The acceleration function a = h′′ is positive (that is h is
convex) in the case that the generatrix of a vessel is a monotone decreasing function,
and the acceleration function a = h′′ is negative (that is h is concave) in the case
that the generatrix of a vessel is a monotone increasing function.

Further in this section, when talking about the height filling function for a
vessel σr, we assume that a liquid (water) flow has a constant inflow rate v0 into
the vessel.

For a given function r, we denote by Sr the corresponding height filling func-
tion for the vessel σr. In the previous text we determined that if function r has
properties (r1) and (r2), then the corresponding height filling function h = Sr has
the properties (h1), (h2) and (h3a) or (h3b). Now, let us see if the opposite is true,
i.e., if h has the properties (h1), (h2) and (h3a) or (h3b), is there a function r with
the properties (r1) and (r2) such that h = Sr?

Note that the formula (1) has an important role in our investigation.
Let a function h : [0, T ] → R, with properties (h1), (h2) and (h3a) or (h3b) be

given. Then there is a corresponding elementary surface of revolution, i.e., there
is a function r with the properties (r1) and (r2) such that the dependence of the
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liquid level in the vessel σr is described exactly by the function h. The function r
is specified by the formula

r(x) =
√

v0

πh′(h−1(x))
, x ∈ [0, h(T )].

Instead of functions from class H[0, T ], we can consider function from some other
classes, and for these new classes we try to determine if there is a corresponding
class of surfaces of revolution. In this sense Professor M. Marjanović has suggested
an interesting class, which we describe now.

Let h : [0, T ] → R be a function with the properties:
(ch1) h is continuous, convex and strictly increasing on [0, T ],
(ch2) h(0) = 0,
(ch3) h′+(0) > 0 and h′−(T ) < +∞.

The class of all functions satisfying the conditions (ch1), (ch2) and (ch3) we denote
by Con[0, T ].

Denote H = h(T ). Since h is strictly increasing and continuous on [0, T ]
we get that h maps [0, T ] onto [0,H], bijectively. We will examine if for a given
h ∈ Con[0, T ] there is a function r : [0,H] → R such that h is the height filling
function for vessel σr.

In the previous discussion we have indicated that there is an injective corre-
spondence between the class of generatrices of elementary surfaces of revolution and
the class H[0, T ] of height filling functions. Since there is a function that satisfies
the conditions (ch1), (ch2) and (ch3) which does not belong to the class of height
filling functions, we conclude that for such function there is no corresponding gen-
eratrix r such that σr is an elementary surface of revolution. However, for a given
function h ∈ Con[0, T ], roughly speaking we show below that we can use function
r given by the formula

r(h(t)) =
√

v0

πh′(t)
.

Since convex function h has the derivative everywhere except on at most count-
able set D, r is defined everywhere except on the set h(D).

But in order to reach the surface of revolution which corresponds to function
h we first introduce the notion of extended graph for monotone function.

Let us assume that we have an interval I and a decreasing function f : I → R.
Then for all x < y, f(x) ≥ f(y) holds. Therefore, f can have only one type of
simple discontinuity, where the right and left limit do not equal to each other.
More precisely, if f has a discontinuity at point p ∈ I then f(p−) > f(p+), where
f(p−) indicates the limit from the left and f(p+) indicates the limit from the right.
Therefore, to discontinuity at point p we can assign the interval Ip = [f(p+), f(p−)].

Let D be the set of points in I at which f is discontinuous. Notice that
the set D is most countable. Define Jp = {(p, y) : y ∈ Ip}, Df =

⋃
p∈D Jp and

Γ∗f = Γf ∪Df , where Γf is the graph of f ; we call Γ∗f the extended graph of f .
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The function r is determined by the formula

r(h(t)) =
√

v0

πh′(t)
.

More precisely, we define function r : [0,H]\h(D) → R, where D is the set of points
t ∈ [0, T ] such that h′(t) does not exist (for simplicity the reader can assume that
the set D is finite). As the function h is convex we get that function r is decreasing
and the extended graph Γ∗r of r is defined. Rotating the curve

{(0, y) : y ∈ [0, r(0)]} ∪ Γ∗r
about x-axis we get the surface ΣΓ∗r . The surfaces which are obtained in this way
are called extended elementary surfaces of revolution. Similarly as we have defined
a vessel (using the corresponding elementary surface of revolution) we define an
extended vessel (using the corresponding extended elementary surface of revolution)
and identify an extended elementary surface of revolution and the extended vessel.

The interested reader can check that the given function h is the corresponding
height filling function for the extended vessel ΣΓ∗r obtained in this way.

Therefore, we have proved the following:

Theorem 1. If h ∈ Con[0, T ] then there exists an extended vessel such that h
is its corresponding height filling function.

Example 1. If the inflow rate v0 is equal to π and if the function
h : [0, 4 ln 2] → R is defined by the formula

h(t) =
{

et/3 − 1, if t ∈ [0, 3 ln 2]
2t− 6 ln 2 + 1, if t ∈ [3 ln 2, 4 ln 2],

then h satisfies the conditions (ch1), (ch2) and (ch3), and we get

r(x) =

{ 1√
1
3 (x+1)

, if x ∈ [0, 1)

1√
2
, if x ∈ (1, 2 ln 2 + 1].

See Figs. 2 and 3.

Fig. 2
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Fig. 3

2. Motion in one dimension

Motion of an object is the change of position of this object relative to another
(reference) object. Motion takes place over time and we will observe the motions
that take place during the time interval [0, T ].

Motion in one dimension is a motion along a straight line. The position of an
object along a straight line can be uniquely determined by its distance (up to the
sign, i.e., up to direction) from a (user chosen) origin. Note: the position is fully
specified by one coordinate (that is why this a one-dimensional problem).

For a given problem, the origin can be chosen at whatever point is convenient.
For example, the position of the object at the moment t = 0 is often chosen to be
the origin. We will also follow this formalism (if not stated otherwise). The position
of the object will in general be a function of time, and this function, x : [0, T ] → R,
is called the position function.

From mathematical point of view it is natural to assume that position function
x is continuous and of bounded variation on interval [0, T ]. The total variation of
the position function over interval [0, t] is the length of path s(t) travelled by the
object from the moment 0 until the moment t. The function s : [0, T ] → R is called
a path function.

From physical point of view it is natural to assume that position function x is
continuous and piecewise monotone on interval [0, T ] (see, for example, Example 3).

We say that a function x is piecewise monotone if there are finitely many
moments 0 = t0 < t1 < · · · < tn = T , and the restriction of x to each interval
[tj−1, tj ] for j ∈ {1, . . . , n} is a monotone function. If j0 ∈ {0, 1, . . . , n} is the
largest index j such that tj ≤ t then we define

s(t) =
j0∑

j=1

|x(tj)− x(tj−1)|+ |x(t)− x(tj0)|
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and s(t) is the length of path travelled by the object from the moment 0 until the
moment t. The function s : [0, T ] → R is called a path function.

We leave to the interested reader to check that a piecewise monotone function
is of bounded variation and that the two definitions of path are consistent.

Further in the text, we assume that a position function is continuous and
piecewise monotone.

The average velocity of an object over a time interval [t1, t2] is defined as

vavg =
x(t2)− x(t1)

t2 − t1
.

The average speed of an object over a time interval [t1, t2] is defined as

uavg =
s(t2)− s(t1)

t2 − t1
.

Suppose now that function x is differentiable on interval (0, T ), and that there
exists x′+(0) and x′−(T ). It follows that the function s is also differentiable on
interval (0, T ), and that s′+(0) and s′−(T ) exist.

The instantaneous velocity at the moment t1 is defined as an average velocity
over time interval [t1, t2], when t2 is “infinitely close” to t1. More precisely,

v(t1) = lim
t2→t1

x(t2)− x(t1)
t2 − t1

= x′(t1).

The instantaneous speed at the moment t1 is defined as an average speed over time
interval [t1, t2], when t2 is “infinitely close” to t1. More precisely,

u(t1) = lim
t2→t1

s(t2)− s(t1)
t2 − t1

= s′(t1).

Note that in the literature simpler terms “velocity” and “speed” are often used
instead of “instantaneous velocity” and “instantaneous speed”.

Instantaneous velocity and instantaneous speed are also functions v : [0, T ] → R
and u : [0, T ] → R.

Proposition 3. For all t ∈ [0, T ] it is true that u(t) = |v(t)|.
This proposition is a corollary of the fact that the function x is differentiable

and piecewise monotone and we leave it to the reader to verify this.
If the object is moving in positive direction, then position function is not

decreasing and v ≥ 0; if the object turns around at t0, then v(t0) = 0; and if the
object is moving in negative direction, then position function is not increasing and
v ≤ 0.

The velocity of an object is defined in terms of the change of position of that
object over time. A quantity used to describe the change of the velocity of an
object over time is the vector acceleration.

The average vector acceleration over a time interval [t1, t2] is defined as

av-avg =
v(t2)− v(t1)

t2 − t1
.
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The average path acceleration over a time interval [t1, t2] is defined as

au-avg =
u(t2)− u(t1)

t2 − t1
.

Note the similarity between the definition of the average velocity (average speed)
and the definition of the average vector acceleration (average path acceleration).

We continue assuming further that function v is differentiable on (0, T ) and
that there exist v′+(0) and v′−(T ). In that case the following holds:

Proposition 4. The function u is differentiable on (0, T ) except perhaps in
points in which function x has extreme values. In these points u′+ and u′− exist.
Also, there exists u′+(0) and u′−(T ).

We leave to interested reader to prove this (see also Example 3 below).
We call av(t) = v′(t) and au(t) = u′(t) (when they exist) instantaneous vector

acceleration and instantaneous path acceleration, respectively. It is convenient to
say, shortly, “vector acceleration” and “path acceleration”, respectively.

Note that in physical literature usually only notion of acceleration is used,
which is in our terminology vector acceleration.

Notice that under assumptions listed above av(t) exists for all t ∈ [0, T ], as far
as au(t) not necessarily exists for those moments t in which the position function x
has extreme values. Also, both av(t) and au(t) can be positive as well as negative.

A positive vector acceleration is in general interpreted to mean an increase
in speed. However, this is not correct. This is obviously true if the velocity is
positive, and the velocity is increasing with time. However, it is also true for
negative velocities if the velocity becomes less negative over time.

Example 2. (Simple harmonic motion) Example of a motion where we can
notice the difference between path and position function, as well as the difference
between speed and velocity, and difference between path acceleration and vector
acceleration, is the simple harmonic motion. Simple harmonic motion is any motion
for whose position function x the following holds:

x′′(t) = −k2x(t),

where k is a positive constant. We may assume that k = 1 and t ∈ [0, 2π] as well
as x(0) = 0 and x′(0) = 1. Under these conditions position function is uniquely
determined, i.e., x(t) = sin t.

Example 3. If position function is defined as

x(t) = sin t, t ∈ [0, π]

then the path function is specified as

s(t) =
{

sin t, t ∈ [0, π/2]
2− sin t, t ∈ [π/2, π].

For instantaneous velocity at the moment t ∈ [0, π] it is true that

v(t) = x′(t) = cos t
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and for instantaneous speed at the moment t ∈ [0, π] it is true that

u(t) = s′(t) = | cos t|.
Finally, for instantaneous vector acceleration at the moment t ∈ [0, π] we have that

av(t) = − sin t

and for instantaneous path acceleration at the moment t ∈ [0, π] we have

au(t) =
{ − sin t, t ∈ [0, π/2)

sin t, t ∈ (π/2, π]

where au(π/2) does not exist. See Fig. 4.

Fig. 4

Example 4. (Constant acceleration) Objects falling under the influence of
gravity are examples of objects moving with constant vector acceleration. A con-
stant vector acceleration means that the vector acceleration does not depend on
time:

a = v′(t).
Integrating this equation, the velocity of the object can be obtained:

v(t) = v0 + at,

where v0 is the velocity of object at the moment t = 0. From the velocity, the
position of object as function of time can be calculated:

x(t) = x0 + v0t + at2/2,

where x0 is the position of object at the moment t = 0.
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A special case of constant vector acceleration is the free fall (falling in vacuum).
In problems of free fall, the direction of free fall is defined along the y-axis, and the
positive position along the y-axis corresponds to upward motion. The acceleration
due to gravity is equal to constant g (along the negative y-axis). The equations
of motion for free fall are very similar to those discussed previously for constant
vector acceleration:

a(t) = v′(t) = −g,

v(t) = v0 − gt,

y(t) = y0 + v0t− gt2/2,

where y0 and v0 are the position and the velocity of the object at the moment t = 0.
Note that in this example we have not chosen the position of the object at time
t = 0 as the origin. The origin is the position of the object at the moment when
motion is completed.
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[12] M. Mateljević, M. Svetlik, The relationship between the shape of the vessel and the height
of the liquid in the vessel, to appear.
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