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1. Introduction

Formulation of theorems in the form of alternative is widely used in mathe-
matics. The following result related to system of linear equations

Either

(Ia) ∃x such that Ax = b

or

(IIa) ∃z such that A>z = 0 and 〈b, z〉 6= 0.

is a well-known example of a theorem of alternatives.
Especially, theorems about convergence of iterative processes are sometimes

formulated as the theorems of alternatives. The problem of finding solutions of
polynomial equations was considered in [6], and the statement was proved about
convergence of a canonical sequences of iterative process associated with equation,
in the form of alternative: Either polynomial equation has no real roots or the
canonical sequence converges and determines a root.

The first theorem of alternative related to systems of linear equations and
inequalities was published in 1873 by P. Gordon. Later, new theorems of alternative
were proved, and they were widely used in proving of the existence of solutions
in linear algebra and analysis, and in derivation of the necessary conditions for
optimality. C.G. Broyden writes [2] (see also [5]) that “Theorems of alternatives
lie at the heart of the mathematical programming.” Farkas’ theorem of alternative
(known as Farkas’s lemma), is present in university courses on optimization, either
in its original form or as a duality theorem in linear programming. Let us note that
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Farkas’ lemma can be interpreted as a finite-dimensional version of Hahn-Banach
theorem.

In this paper, in Section 2, we give five different proofs of the theorem of al-
ternative. The proof connected with separation theorem is based on geometrical
interpretation of the theorem and it is probably the shortest and the most popular.
However, it cannot be considered as an “elementary proof”, because some “topo-
logical arguments” (though simple) are used in it. In the second proof the so-called
Fourier-Motzkin’s method of elimination [3] is used which can be considered as a
particular case of the well-known Tarski’s theorem on quantifier elimination. This
interesting method can in principle be used for construction of theorem provers,
but the volume of computing grows too fast with dimension of the problem.

The proof by induction of the Farkas’ lemma is infrequent in literature. Method
o induction was used in [1] for proving of one generalization of Farkas’ lemma. Here,
we follow this proof.

The fourth proof which belongs to C.G. Broyden [2] is also algebraic. Namely,
Broyden proved one property of orthogonal matrices from which Farkas’s lemma
can be derived.

Finally, let us note that Farkas’s lemma has been applied to different problems
in economics. We also present one such application, because it can contribute to
understanding of this lemma.

2. Farkas’ lemma

We will begin with formulation of one statement known as Farkas’ lemma.

Teorema 1. (Farkas’ lemma) Let A be a matrix of order m × n and b a
vector-column of dimension m. Then either

(I) ∃x ≥ 0 such that Ax = b

or

(II) ∃z such that A>z ≤ 0 and 〈b, z〉 > 0.

It is clear that (II) is equivalent to

(II’) ∃z such that A>z ≥ 0 and 〈b, z〉 < 0.

G. Farkas was a professor of Theoretical physics at the University of Kolozsvar
(Hungary). He obtained this result while he was solving the problem of mechanical
equilibrium posed by J. Fourier in 1798. He published it for the first time in 1898 in
Hungarian, but Farkas’ best-known exposition of his famous lemma was published
in German in 1902.

If we denote the vectors-columns of matrix A by a1, a2, . . . , an, we obtain an
equivalent form of this theorem.
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The inequality 〈b, z〉 ≥ 0 is a consequence of the system of inequalities

〈a1, z〉 ≥ 0, 〈a2, z〉 ≥ 0, . . . , 〈am, z〉 ≥ 0

if and only if vector b is a linear combination

b = x1a
1 + x2a

2 + · · ·+ xnan

with nonnegative coefficients x1, x2, . . . , xn.
Farkas’s lemma shows that non-solvability of the system can be “certified”:

the solution z of (II) can be used as a “certificate” that the system (I) cannot be
solved. Such certificates in mathematics are called obstructions.

There are several generalizations of Farkas’ lemma. A part of these generaliza-
tions is related to the solvability of linear equation systems in other sets (besides
Rn

+). For example, the following theorem gives a criterion of solvability of linear
equation systems in integers.

Theorem 2. Let A be a rational matrix and b a rational column vector. Then
either

system Ax = b has an integer solution,

or
∃y such that A>y is an integer and 〈b, y〉 is not an integer.

3. Proofs of Farkas’ lemma

There are several variants of theorems of alternative and a lot of their proofs.
Here, we will present some of the proofs of Farkas’s lemma.

We will separately prove that the systems (I) and (II) are not solvable simul-
taneously. Assume the contrary, that there exist x0 ∈ Rn and z0 ∈ Rm that are
solutions to (I) and (II) respectively. Then, we have

0 = 〈x0, 0〉 = 〈x0, A
>z0〉 = 〈Ax0, z0〉 = 〈b, z0〉 > 0.

Thus, we arrive at a contradiction, and the first part of Farkas’s lemma is proved.
Now, we will present some proofs of the second part of Farkas’s lemma.
Proof 1. Let us suppose that the system (I) has no solution. Then b /∈ C :=

{Ax : x ≥ 0}. The set C is convex and closed, so by the separation theorem of
closed convex sets, there exists a hyperplane H := {x : 〈z, x〉 = α} containing b
(α = 〈z, b〉) such that

(∀y ∈ C) 〈z, y〉 < α ⇒ (∀x ∈ Rn
+) 〈A>z, x〉 < α.

This inequality is possible only for α > 0 and A>z ≤ 0. So, we conclude that there
exists z ∈ Rm, satisfying (II).

Let us remark that in this very short and elegant geometric proof, the proof
that the set C := {Ax : x ≥ 0} is closed was omitted. In addition, separation
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theorem is intuitively acceptable, but its proof is not so easy. These two facts are
the most sensitive part of the geometrical proof of the theorem of alternative.

Note also that the existence of separating hyperplane for the set C and b /∈ C
can be derived as a consequence of Farkas’ lemma. It means that there is a ball
B(b, r) such that C ∩B(b, r) = ∅ and C is a closed set.

Instead of the separation theorem, one can use in this proof some properties
of the projection on a convex closed set. Namely, if there is no x ∈ Rn

+ such that
Ax = b, then there is a unique point u = Ay = πC(b), where πC(b) is the projection
of b on C. The key property of the projection gives:

〈b−Ay, Ax−Ay〉 ≤ 0 for all x ≥ 0.

Let us put z = b− u = −Ay + b. Then,

〈x− y, A>z〉 ≤ 0, for all x ≥ 0.

From here, for x = y + ei ≥ 0, where e1, e2, . . . , en is the standard basis of Rn, we
have that the i-th component (A>y)i of A>y is nonpositive, i.e. A>z ≤ 0. Besides,

〈z, u〉 = 〈z,Ay〉 = 〈−Ay + b, Au〉 = 〈b−Ay,Au−Ax〉 ≥ 0,

and
〈b, z〉 = 〈u + z, z〉 = 〈u, z〉+ 〈z, z〉 > 0.

In [4], the proof of existence of the projection of b on C was given by introducing
a simple iterative algorithm. Then the closedness of set C can be derived as an
immediate consequence of the existence of projection of any point b ∈ ∞Rn on C.
Hence, Dax’s proof can be considered as an indirect proof of the closedness of set
C.

Proof 2. In this proof (see [3]) the so-called Fourier-Motzkin method for elimi-
nation of variables in linear inequalities will be used. This method can be considered
as a particular case of Tarski’s quantifier elimination theorem. It can be used for
building of a theorem provers for this case. But, even in the case of a system of
linear inequalities with only existential quantifiers, the method has very fast growth
of the number of computational operation.

Denote by a1, a2, . . . , am and a1, a2, . . . , an the rows and the columns of matrix
A = (aij)m×n. Then, system (II) can be written in the form

〈a1, z〉 ≥ 0, 〈a2, z〉 ≥ 0, . . . , 〈an, z〉 ≥ 0, 〈an+1, z〉 ≤ −β < 0,

where vector b is denoted by an+1.
For example, suppose that we wish to eliminate the variable z1 from the above

system. Let us denote I+ = {i : a1i > 0}, I− = {i : a1i < 0}, I0 = {i : a1i = 0}.
The new system of inequalities will be constructed using the following rules.

For each pair (k, l) ∈ I+ × I− let us multiply the inequalities 〈ak, z〉 ≤ 0 and
〈al, z〉 ≤ 0 by −a1l > 0 and a1k > 0, respectively. Adding these two inequalities,
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we obtain a new one that does not contain the variable zl. All inequalities obtained
in this way will be added to those already in I0. If I+ (or I−) is empty, we simply
delete inequalities with indices in I− (or in I+). The inequalities with indices in I0

form a new system of linear inequalities Bz′ ≤ d, z′ = (z2, . . . , zn). The procedure
of elimination of variable z1 is described.

Let us remark that if z′ = (z′2, . . . , z
′
n) is a solution of the system Bz′ ≤ d, and

max
l∈I−

al1−1(−
n∑

j=2

alj + bl) ≤ z1 ≤ min
k∈I+

ak1−1(
n∑

j=2

akj − bk)

then z = (z1, z
′) = (z1, z2, . . . , zn) is a solution of the system (II).

Suppose that the system (II): A>z ≤ 0, 〈−b, z〉 ≤ −β < 0 has no solution.
Applying Fourier-Motzkin method for the elimination of the variables z1, z2, . . . , zn,
one obtains a system of inequalities without variables, that is a contradiction. This
procedure converts the system (II) in inconsistent system

(R q )
(

A>

−b>

)
= ( R q ) ( 0 −β ) ,

with β > 0 and nonnegative elements of the matrix (R q). It means that RA> −
qbt = 0, where at least one qi 6= 0. Consequently, there is x ≥ 0 such that
Ax− b = 0.

Proof 3. The proof by induction is the third that will be presented here. In
spite of its simplicity, this proof is quite infrequent in literature. We will expose
this proof by following the proof of a generalization of Farkas’ lemma from [1].

For n = 1 the systems (I) and (II) have the following form

∃x ∈ R+ such that ax = b (a, b ∈ Rm

∃z ∈ Rm such that 〈a, z〉 ≤ 0 and 〈b, z〉 > 0.

and the statement is obviously valid.
Let us assume that the statement is valid for all natural n and let us consider

m-dimensional vectors a1, a2, . . . , an, an+1. We have to prove that: (I) there exist
nonnegative real numbers x1, x2, . . . , xn, xn+1 such that b = x1a

1 + · · · + xnan +
xn+1a

n+1 or (II) there exists z ∈ Rm such that 〈a1, z〉 ≤ 0, . . . , 〈an, z〉 ≤ 0,
〈an+1, z〉 ≤ 0, 〈b, z〉 > 0.

By induction hypothesis, we have that: (i) there exist nonnegative real numbers
x1, x2, . . . , xn such that b = x1a

1 + · · ·+ xnan or (ii) there exists z ∈ Rm such that
〈a1, z〉 ≤ 0, . . . , 〈an, z〉 ≤ 0, 〈b, z〉 > 0. In case (i) it is enough to put xn+1 = 0
and we will obtain that (I) is valid. In case (ii), we will consider two possibilities:
(ii-1) 〈an+1, z〉 ≤ 0 and then we obtain that (II) is valid.

So, it remains to consider the case when there exists z = z ∈ Rm such that
〈a1, z〉 ≤ 0, . . . , 〈an, z〉 ≤ 0, 〈b, z〉 > 0 but 〈an+1, z〉 > 0. Let us consider two
systems

(A) 〈a1, z〉 ≤ 0, . . . , 〈an, z〉 ≤ 0, 〈an+1, z〉 ≤ 0, 〈b, z〉 > 0.
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and

(B) 〈a1, z〉 ≤ 0, . . . , 〈an, z〉 ≤ 0, 〈an+1, z〉 = 0, 〈b, z〉 > 0.

Each solution of (B)is a solution of (A). Further, if z is a solution of (A) then z + z
is a solution of (B). Hence, (A) has a solution (in this case (II) is valid) if and only
if (B) has a solution.

Now, let us consider vectors ci = ai−λia
n+1, i = 1, 2, . . . , n and b′ = b−µan+1

where λi = 〈ai,z〉
〈an+1,z〉 ≤ 0 and µ = 〈b,z〉

〈an+1,z〉 > 0. It is easy to see that the system (B)
has a solution if and only if system

(C) 〈c1, z〉 ≤ 0, . . . , 〈cn, z〉 ≤ 0, 〈an+1, z〉 = 0, 〈b′, z〉 > 0.

has a solution. So, we have to concern the system (B).
Using the induction hypothesis again, we have that: (j) there exist nonnegative

real numbers y1, y2, . . . , yn such that b′ = y1c
1+· · ·+yncn or (jj) there exists u ∈ Rm

such that 〈c1, u〉 ≤ 0, . . . , 〈cn, u〉 ≤ 0, 〈b′, u〉 > 0. In case (jj), we have that the
vector z = u− γz where γ = 〈b,u〉

〈an+1,z〉 , is a solution of (C) and consequently (II) is
valid.

If there exist nonnegative real numbers y1, y2, . . . , yn such that b′ = y1c
1 +

· · ·+ yncn (case (jj)), then

b′ = b− µan+1 = y1c
1 + · · ·+ yncn = y1a

1 − λ1y1a
n+1 + · · ·+ ynan − λnynan+1.

Hence,
b = y1a

1 + · · ·+ ynan + yn+1a
n+1

where y1, y2, . . . , yn and yn+1 = µ − λ1y1 − · · · − λnyn ≥ 0. It maens that (I) is
valid.

The fourth proof appeared in G. Broyden’s paper [2]. It is based on one
property of orthogonal matrices that is referred as a Broyden’s theorem.

Broyden’s theorem. If Q = (qij)n×n is an orthogonal matrix, then there
exists a vector x > 0 and a unique diagonal matrix S = diag(s1, s2, . . . , sn) such
that si = ±1 and SQx = x.

The Broyden’s proof of this theorem is by induction. For m = 1 the theorem
is trivially true (Q and S are both equal to either +1 or −1). Assume the theorem
is true for all orthogonal matrices of order m×m. Let Q = (qij)(m+1)×(m+1) be an
orthogonal matrix and let

Q =
(

P r
qt α

)
,

where P = (pij)m×m. If α = 1 or α = −1, then r = q = 0 and the step induction
becomes trivial. So, in what follows we can assume that |α| < 1. Since Q is an
orthogonal matrix,

P>P + q>q = I, P>r + αq = 0, r>r + α2 = 1.
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It follows from these equations that the matrices

Q1 = P − rq>

α− 1
, Q1 = P − rq>

α + 1

are orthogonal and that

Q>2 Q1 = I − q
2

1− α2
q>.

Using induction assumption we conclude that there are x1 > 0 and x2 > 0 and
diagonal sign matrices S1 and S2 such that S1Q1x1 = x1, S2Q2x2 = x2. From this
we obtain that

〈S1x1, S2x2〉 = 〈Q1x1, Q2x2〉 = 〈Q>
2 Q1x1, x2〉 = 〈x1, x2〉 − 2

1− α2
〈x1, q〉〈x2, q〉.

Now, we have to consider two cases.
Case 1. If S1 6= S2, then 〈S1x1, S2x2〉 < 〈x1, x2〉. So, 〈q, x1〉 6= 0 and 〈q, x2〉 6=

0 and both scalar products have the some signs. For

η1 =
−〈q, x1〉
α− 1

, η2 =
−〈q, x2〉
α + 1

, z1 =
(

x1

η1

)
, z2 =

(
x2

−η2

)
,

S1 =
(

S1 0
0 1

)
, S2 =

(
S2 0
0 −1

)
,

we have
Qz1 = S1z1, Qz2 = S2z2.

Now, since |α| < 1, and both scalar products 〈q, xi〉 have the same signs, one of ηi

is positive and one of the vectors z1 and z2 is the required vector. In case 1 the
proof is completed.

Case 2. If S1 = S2, then 〈S1x1, S2x2〉 = 〈x1, x2〉 and at least one of 〈q, x1〉 and
〈q, x2〉 is zero. We will assume that 〈q, x1〉 6= 0 and 〈q, x2〉 = 0. So Px1 = S1x1 =
Q1x1 and Qz1 = S1z1, where

z1 =
(

x1

0

)
, S1 =

(
S1 0
0 σ

)
, σ = ±1 may be chosen arbitrarily.

Now, if we rewrite Q in the form

Q =
(

α1 q>1
r1 P1

)

where P1 is a matrix of the type m×m, and repeat the previous argument, we will
obtain that there exist a positive vector x2 and a diagonal matrix S2 with ±1 on
diagonal, such that

Qz2 = S2z2, z2 =
(

0
x2

)
, S2 =

(
0 σ′

S1 0

)
,

where σ′ = ±1, σ = ±1 may be chosen arbitrarily.
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Combining the equation Qz1 = S1z1 and Qz2 = S2z2, we obtain

Q(z1 + z2) = S1z1 + S2z2,

with strictly positive coordinate z1j and z2j for j ≥ 2. If for some j ∈ {2, . . . , m} the
corresponding diagonal elements of S1 and S2 are different, then ‖S1z1 + S2z2‖ <
‖z1+z2‖ = ‖Q(z1+z2)‖, but it is a contradiction with the previous equality. We can
choose the elements σ and σ′ so that S1 = S2. So, we have Q(z1+z2) = S1(z1+z2),
and since z1+z2 is strictly positive and S1 is a diagonal matrix with ±1 on diagonal,
this establishes the induction in case S1 = S2.

Assume that there exist two positive vectors x and y and two diagonal matrices
S and R with ±1 on diagonal, such that Qx = Sx = Ry, and S 6= R. Then

〈x, y〉 = 〈Qx,Qy〉 = 〈Sx, Ry〉 < 〈x, y〉,
giving a contradiction. Therefore, R = S. This completes the proof of Broyden’s
theorem.

The next result known as Tucker’s theorem is a simple consequence of Broy-
den’s theorem.

Tucker’s theorem. Let A be a skew-symmetric matrix. Then there exists
y ≥ 0 such that Ay ≥ 0 and y + Ay > 0.

Proof. Since A is skew-symmetric then (I +A)−1(I−A) is orthogonal, so that
there exist a positive vector x and a unique matrix S such that

(I −A)−1(I + A)x = Sx ⇔ x + Ax = Sx−ASx.

If we denote y = x + Sx, z = Ay = Ax + ASx = x − Sx, then every coordinate
yj of vector y is equal either 2xj or zero, so y ≥ 0. Similarly, z ≥ 0. But y + z =
y + Ay = 2x > 0.

Proof 4. (Broyden’s proof of Farkas’s lema) Apply Tucker’s theorem to skew-
symmetric matrix

B =




O O A −b
O O −A b

−A> A> O 0
b> −b> O> 0.




By Tucker’s theorem, there exists a positive vector y = (z1, z2, x, t)> such that
y + By > 0. Consider the two cases: t > 0 and t = 0 with z = z1 − z2. If t > 0 the
vector y may be normalized so that t = 1, from which we obtain Ax = b. If t = 0
then A>z ≤ 0 and 〈b, z〉 > 0.

In his paper Broyden discussed the question of relation between Tucker’s the-
orem, Farkas’s lemma and Broyden’s theorem. He derived Tucker’s theorem and
Farkas’s lemma as simple consequences of Broyden’s theorem. In [7] Ross and
Terlaky showed that Broyden theorem is also a simple consequence of Tucker’s the-
orem and Farkas’s lemma. It means that Farkas’s lemma, Tucker’s theorem and
Broyden’s theorem are equivalent results.
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In [7], the following observation was made: for a given orthogonal matrix Q
the existence of a unique diagonal matrix S with diagonal elements sii = ±1 and
positive vector x such that Qx = Sx is equivalent to the existence of a positive
vector x such that

|Qx| = x, x > 0 ⇔ −x ≤ Qx ≤ x, x > 0,

where |y| denotes the vector whose entries are absolute values of the entries of
vector y. So, if one finds a vector x satisfying the previous conditions, then sii = 1
if xi > 0 and sii = −1 if xi < 0.

This Roos’ and Terlaky’s comment was a very perspicuous answer on Broyden’s
remark [2] that “However, it may yet be possible to construct such algorithm (for
determining of the sign of a matrix) and the author suspects that if this is the case
then any successful example would have more than a passing resemblance to the
interior point algorithms, but only the passage of time will resolve this conjecture”.

3. An example of economic interpretation of Farkas’ lemma

Let us consider a market in which m different assets are traded. Suppose that
there are n possible states of market at the end of the period. Let us denote by
p1, p2, . . . , pm the given prices at the beginning of the period. Let A = (aij)m×n be
a payoff matrix, where aij denote the price of i-th asset at the end of the period, if
the market is in state j. A portfolio of assets is then a vector x = (y1, y2, . . . , ym),
where yi denotes the amount of i-th asset. If the component yi is positive, then
the investor which bought yi units of i-th asset will receive ajiyi if j-th state
materializes. But, one supposes that sell short position is allowed, that means
selling some quantity of i-th asset at the beginning of the period and buying it
back at the end. Consequently, yi can be negative. In this case one must pay out
aji|yi|.

At the end of the period the investor with portfolio y = (y1, y2, . . . , y) will re-
ceive z = A>y, where zj =

∑n
i=1 ajiyi is a result from portfolio y = (y1, y2, . . . , yn)

in the state j. The cost of acquiring a portfolio x is given by 〈p, y〉. In asset pricing
the main problem is to determine the prices pi. In arbitrage pricing theory, the
standard condition is the absence of arbitrage: there is no portfolio with a negative
cost but a positive return in every state. This principle can be formulated as

if A>y ≥ 0 then 〈p, y〉 ≥ 0
or as

there is no y such that A>y ≥ 0, 〈p, y〉 < 0.
It means that only certain prices p are consistent with principle of absence of

arbitrage. Here we have new question: how to describe these prices? The answer
is contained in the following variant of Farkas’ lemma.

Theorem 3. The absence of arbitrage condition holds if and only if there
is a nonnegative vector q ∈ Rn

+ such that the prices of assets are given by pi =∑m
j=1 ajiqj.
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Let us comment the above theorem. If the absence of arbitrage condition holds,
then the system Ay ≥ 0, 〈p, y〉 < 0 has no solutions. Now, from Farkas’ lemma
we derive the existence of vector q ∈ Rn, such that p = Aq. Then for p∗ = p∑

i
qi

and q∗ = q∑
i
qi

we obtain the equality in scaled prices: p∗ = Aq∗. Further, vector

q∗ can be interpreted as a vector of distribution of probabilities. Hence, there is
a distribution of probabilities under which the expected return of every asset is
equal to its price. These probabilities are called risk-neutral probabilities. Hence,
Farkas’ lemma can be formulated as: the existence of risk-neutral probabilities is a
consequence of the absence of arbitrage condition.
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