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Abstract. The paper is devoted to exposition of constructions with straightedge
and compass, constructible numbers and their position with respect to all algebra-
ic numbers. Although the large number of constructions may be accomplished with
straightedge and compass, one of the known problems of this kind dating from Greek
era is duplication of a cube. The given proof in this paper is elementary and self-
contained. It is suitable for teachers, as well as for high school students.
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1. Introduction

Constructive problems have always been the favorite subject of geometry. The
traditional limitation of tools used for solving geometric constructions to just the
compass and the straightedge reaches far into the past, although the Greeks had
also been using certain other instruments. The well known Euclidean geome-
try (III B.C.) was based on geometric constructions performed only by compass
and straightedge, treated as equal instruments in constructions. In addition, the
straightedge may be used only as an instrument for the construction of a straight
line, but not for measuring the lengths. Although the large number of constructions
may be accomplished this way, we know of three problems dating from Greek era
that cannot be solved in that way: duplication (doubling) of a cube – to find a side
of a cube whose volume is twice that of a given cube; trisection of an angle – to
find one third of a given angle; squaring a circle – to construct the square that has
the same area as a given circle.

Unsolved problems of that kind initiated a completely new way of thinking –
how would it be possible to prove that certain problems could not be solved? The
answer is in modern algebra and group theory. The problem of solving algebraic
equations dates far back in the past and for a long time it was the central content
of algebra. Descriptions of solving certain simple algebraic equations had appeared
as early as 2000 years B.C, for example in Egypt, during the Middle Dynasty,
in the London papyrus known as Ahmess calculation, and on Babylonian tiles,
approximately at the same time. The Babylonians were able to solve quadratic
equations, while in the XVI century Girolamo Cardano, Nicolo Tartaglia, Lodoviko



52 A. Grozdanić, G. Vojvodić

Ferari, Scipione del Ferro and many others were dealing with solving cubic and
quadratic equations.

For a long time, the question concerning the possibility to solve algebraic
equations by radicals remained open in algebra. For an algebraic equation we shall
say that it is solvable by radicals if its solutions may be obtained by using rational
operations (addition, subtraction, multiplication, and division) and the operation
of taking nth roots, under the assumption that those operations are applied a finite
number of times onto coefficients or onto functions of coefficients in which only the
aforementioned operations appear. This way, the quadratic, cubic and biquadratic
equations are solvable by radicals. It was to be expected that the equations of the
fifth degree and of higher degrees would be solvable the same way, but it turned
out to be impossible.

The initial foundations of solvability of algebraic equations were established
by the French mathematician E. Galois, by connecting the solvability of algebraic
equations by radicals with group theory. The demand that the roots of the algebraic
equation f(x) = 0 may be expressed by coefficients of that equation, by using
rational operations and taking nth roots is expressed as a demand that the field
F has to be a component of a radical extension field of K. When this demand is
fulfilled one can say that the given algebraic equation is solvable by radicals. Galois
has determined the criterion of solvability of algebraic equations that may be solved
only by radicals, and such criterion is based on a fact that the corresponding group
of that equation is solvable.

The general algebraic equation
n∑

k=0

akxk = 0 ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anxn = 0, (n > 4)

of a degree higher than four with independent real coefficients ak (k = 0, 1, 2, . . . , n)
is not solvable by radicals. Many great mathematicians, such as for example L.
Euler, thought that it was possible, but Ruffini and Abel disputed that at the
beginning of the XIX century. This does not concern the issue of the existence of
a solution of an algebraic equation of the nth degree. That was proved by Gauss
in 1799 in his PhD thesis. Abel’s and Ruffini’s problem was whether that equation
could be solved by radicals and taking nth roots? The path to the solution of that
problem led to the development of modern algebra and group theory.

2. Solving the problem of duplication of a cube
with compass and straightedge only

According to a legend, the problem of duplication of a cube arose when the
Greeks of Athens sought assistance from the Oracle at Delphi in order to appease
the Gods to grant relief from a devastating plague epidemic. The Oracle told them
that to do so they had to double the size of the altar of Apollo which was in the
shape of a cube. Their first attempt at doing that was a misunderstanding of the
problem: they doubled the length of the sides of the cube. That, however, gave
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them eight times the original volume since (2x)3 = 8x3. In modern notation, in
order to fulfill the instructions of the Oracle, one must go from a cube of side x units
to one of y units where y3 = 2x3, so that y = x 3

√
2. Thus, essentially, given a unit

length, they needed to construct a line segment of length y = x 3
√

2. Now there are
ways of doing this but not by using only the compass and an unmarked straightedge
– which were the only tools allowed in classical Greek geometry. Constructive path
of solving this problem was known to ancient Greeks unless we would not demand
limitation of construction on use of only compass and straightedge. By using hard,
90 degree angle and movable cross-shaped rectangle, it is possible to construct a
side of a cube whose volume is twice larger than the volume of a cube with unit
side. For detailed description see the book [1].

For the sake of simplicity, let us assume that the given cube has the side length
equal to the unit of measurement of length. Now the problem of duplication of a
cube may be expressed in the following way:

For a given cube with a side of the unit of measurement find the side
of a cube whose volume is twice that of the given cube.
The problem is reduced to the solving of the cubic equation x3 = 2. We shall

show that this problem cannot be solved by using compass and straightedge only,
i.e. that the roots of polynomial p(x) = x3 − 2 are not constructible.

To show this, we shall define the term of constructible and algebraic numbers.
Then, we shall observe the algebraic equation x2−2 = 0 for whose root

√
2 we shall

show that is an irrational, algebraic and constructible number. Afterward we shall
show that there is no analogy for the cubic equation, i.e. the equation x3 − 2 = 0
has one root that is a real number and two conjugate complex roots, where the real
root 3

√
2 is irrational, algebraic, but not a constructible number.

2.1. On constructible numbers

As already mentioned, the quest for the answer concerning the possibility to
solve algebraic equations by radicals has led us to the answer for the question of
solving particular geometric problems by using the compass and straightedge only.
In order to derive the proof on the duplication of a cube by applying algebra, it is
necessary to convert that geometric problem to the language of algebra. Each geo-
metric construction may be reduced to the following form: given a certain numbers
of line segments a, b, c, . . . and looking for one or more line segments x, y, z, . . .
Geometric construction is than reduced to solving an algebraic problem:
• Determining the connection, i.e. equation between the wanted measure x and

the given measures a, b, c, . . . ;
• Determining the unknown measure x by solving that equation;
• Determining whether that solution is arrived at through a procedure that cor-

responds to the construction performed by compass and straightedge.
Let us define the term of a constructible number. We shall say that a real

number b is constructible, if it is possible, in a definite number of steps, to construct,
with compass and straightedge, a segment of the length |b|.
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Let us notice the connection between some of the simplest algebraic operations
and elementary geometric constructions, where we shall assume that the given
lengths a and b are measured according to the given “unit” measure, and that r
represents any rational number.

1. Construction of a line segment that has the length a + b or a− b

Let us spot an arbitrary point O on an arbitrary line. Construct the line
segment OA that has the length a. Construct point B on that line, so that the line
segment AB has the length b. Then, OB = a + b (Figure 1).

Fig. 1 Fig. 2

The line segment a − b (a > b) is constructed in a similar manner. On an
arbitrary line, spot a point O. Construct the line segment OA that has the length a.
Construct point B in the opposite direction on that line, so that the line segment
AB has the length b. Then, OB = a− b (Figure 2).

2. Construction of a line segment that has the length ra

In order to construct ra we simply apply r times a + a + · · ·+ a, where r is a
natural number.

3. Construction of a line segment that has the length a/b

In order to construct a/b, we mark OB = b and OA = a on the arms of any
angle with the vertex in point O, and on line OB we mark the segment OD = 1.
Through D, we construct a straight line parallel to line AB that intersects OA at
point C. Then OC will have the length a/b (Figure 3). Indeed, from the similarity
of triangles OAB and OCD it follows that OB : OD = OA : OC, i.e. b : 1 = a : OC,
wherefrom we can see that OC = a/b.

Fig. 3
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4. Construction of a line segment that has the length ab

As we did thus far, we mark the line segments OA = a and OB = b on the
arms of an angle whose vertex is in point O. On line OA, we mark the unit segment
OC. Draw a straight line through points C and B, and after that a straight line
through A, that is parallel to the straight line which will intersect the second arm
of the angle in some point D. Then OD = ab (Figure 4). The proof of validity of
this construction follows from the similarity of triangles OAD and OCB (Figure 4).
Indeed, from the mentioned similarity it follows that OC : OA = OB : OD, i.e.
OD = OA ·OB. So, it is indeed true that OD = a · b.

Fig. 4

From the aforementioned constructions it appears that “rational” algebraic
operations of adding, subtracting, multiplying and dividing of known measures
may be conducted by geometric constructions. A set of measures that may be
calculated in that way form the so-called numerical field, i.e. a set of numbers such
that the application of rational operations on two or more members of that set,
results in a number that again belongs to that set. Rational, real and complex
numbers create such fields.

Introduction of the construction of a square root takes us out the fields arrived
at in that manner.

5. Construction of a line segment that has the length
√

a

We claim that if the given line segment is of length a, then the line of length
√

a
may be constructed by compass and straightedge. Apply the line segments OA = a
and AB = 1 on a straight line. Draw a circle whose diameter equals to the line
segment OB, i.e. a circle whose center is in the midpoint of line segment OB and
whose radius equals OB/2, and construct a line perpendicular to line OB from the
point A that intersects the circle in point C. Line segment AC =

√
a. The proof

follows from the similarity of triangles OAC and ABC. Indeed, on the basis of
this similarity it follows that OA : AC = AC : AB, i.e. OA = AC2, wherefrom it
follows that AC =

√
OA. Therefore, AC =

√
a.

Note that each geometric construction with a compass and straightedge in a
Euclid’s plane always boils down to solving the following basic simpler tasks, not
necessarily in following order:
• Construct a straight line trough two points;



56 A. Grozdanić, G. Vojvodić

Fig. 5

• From a given point, as a center, construct a circle;

• Find points representing the intersection of two given circles;

• Find points representing the intersection of a given circle and a straight line
defined by two points;

• Find points representing the intersection of two straight lines, each defined by
two points,

where the basic elements – point, straight line and a circle are treated as known if
they are specified at the beginning or if they were constructed within a previous
step.

Let us assume that there is only one given element, unit segment 1. As the set
of rational numbers is closed with regard to all rational operations, i.e. operations
of adding, subtracting, multiplying and dividing two rational numbers (excluding
division by zero), again result in a rational number, it turns out that all rational
numbers may be constructed by compass and straightedge. Any set of numbers
with this characteristic of being closed in regard to four rational operations is
referred to as a numerical field. As we have shown that it is possible to construct√

k with compass and straightedge, the only thing that remains is to check whether
the extension of the set of rational numbers Q(

√
k) for any rational number k, will

include constructible numbers only.

Let us observe any numerical field F of constructible numbers. Let us check
whether it would be also possible to construct numbers in the form of p + q

√
k,

where p, q and k come from the field of constructible numbers F .

Let us pick a number k from field F , let us find its square root and construct
the field F ′ comprising of numbers in the form of p + q

√
k, where p and q are

from F . It is easy to show that adding, subtracting, multiplying and dividing two
numbers from the field F ′ again results in a number in the form p + q

√
k of where

p and q are from F . Field F is a subfield of the field F ′. If we were to take that in
the form p + q

√
k, q = 0, we conclude that all numbers from F are included in F ′,

assuming that
√

k is a number that does not belong to field F .

Following all those considerations we are ready to describe the set of all con-
structible numbers. Let us start from the field F0, e.g. the field of rational numbers,
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which is defined if the unit line segment is given. Add
√

k0 where k0 is from F0, but√
k0 is not. By that, we construct the extended field F1 of constructible numbers,

comprising of numbers in the form of p0 + q0

√
k0, where p0 and q0 are arbitrary

numbers from F0. We can define a new extension of the field F1 with numbers
p1 + q1

√
k1, where p1 and q1 are arbitrary numbers from F1, where k1 is from F1,

but
√

k1 is not. By repeating this procedure, we arrive to the field Fn, after n
additions of square roots. All constructible numbers are those and only those that
may be arrived at with such a sequence of extended fields, in fact those ones that
are located in the extended field Fn.

It would also be interesting to mention that if we assume that we can construct
all numbers of a certain numerical field F , by using only the straightedge (in fact
connecting two points within that field or finding the crossing point of two lines
within that field) we shall not exit the field in question. It is also a fact, that with
only one use of compass (the point acquired as the intersection of two circles or a
circle and a line) we can expand the field F . The expansion of the field F would
be the field F ′ composed of numbers in the form of p + q

√
k, where p and q are

from F .

2.2. Duplication of a cube

As we have already mentioned, we shall start from the algebraic equation
x2 − 2 = 0. We shall show that the root of this equation,

√
2, is an algebraic,

constructible and irrational number. Afterward we shall observe the equation x3−
2 = 0 and we shall show that this equation has one root that is a real number
and two conjugate complex roots, where the real root 3

√
2 is an algebraic, irrational

number, but not a constructible number.
Let us define an algebraic number. We shall say that a certain real or complex

number x is algebraic if it fulfills a certain algebraic equation of the following form

anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0 (n ≥ 1, an 6= 0),

where ak are whole numbers.
As

√
2 is a root of the algebraic equation x2−2 = 0, we may conclude that

√
2

is an algebraic number. Based on the construction No. 5 above we may conclude
that

√
2 is also a constructible number. It remains to be shown that

√
2 is an

irrational number. We shall present an interesting geometric way of proving the
irrationality of the number

√
2. Let us suppose the contrary, that

√
2 is a rational

number, i.e. it may be written in the form of a real fraction
√

2 =
m

n
(m,n ∈ Q,

lcd (m,n) = 1). By squaring this equation it follows that m2 = 2n2. Note that the
inequality n < m < 2n is valid.

Let quadrangle ABCD be a square with sides equal to m (Figure 6) and let
A1, A2, C1, C2 represent the points on the sides of that square, so that it is valid
that AA1 = AA2 = CC1 = CC2 = n. Let us notice points E, F , G and H so
that the quadrangles ¤AA1EA2 and ¤CC1FC2 are squares with sides equal to n,
and quadrangles ¤A1BC1G and ¤C2DA2H are squares with sides equal to m−n.
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Fig. 6

Note that the quadrangle ¤FGEH is also a square. Let us mark the side of that
square with k, where k ∈ N, k < m. The area of the square ¤ABCD may be
presented as

PABCD = PAA1EA2 + PA1BC1G + PCC1FC2 + PA2HC2D − PFGEH

on the basis of which it follows that m2 = n2 + (m− n)2 + n2 + (m− n)2 − k2, i.e.
m2 = 2n2 + 2(m − n)2 = k2. In view of the fact that m2 = 2n2, it follows that
k2 = 2(m − n)2. That, however, is in contradiction with the assumption that m
is the smallest non-negative whole number for which a natural number n exists so
that m2 = 2n2. Therefore

√
2 is not a rational number.

With this we did show that
√

2 is an algebraic, constructible and irrational
number.

Let us now observe the cubic equation x3−2 = 0 to which the problem of cube
duplication is reduced. Let us notice that this equation has one real solution and
two complex solutions. Indeed, we can write the equation x3 − 2 = 0 in the form
of (x − 3

√
2)(x2 + x 3

√
2 + 3

√
22) = 0, wherefrom we can see that the solutions are

x1 = 3
√

2 and x2,3 =
− 3
√

2±
√

3
√

22 − 4 3
√

22

2
. By sorting out the expression further,

we shall get x1 = 3
√

2 and x2,3 =
− 3
√

2±
√
−3 3
√

4
2

. Finally, we see that x1 = 3
√

2

and x2,3 = − 3
√

2
1± i

√
3

2
.

As 3
√

2 is a root of the algebraic equation x3 − 2 = 0, it follows that 3
√

2 is an
algebraic number. Let us show that is not a rational number. Let us suppose the
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contrary, that 3
√

2 is a rational number. It would follow that it could be written in
the form of real fraction 3

√
2 =

p

q
, (p, q ∈ Q, lcd (p, q) = 1). It would follow from

this that 2 =
p3

q3
, i.e. 2q3 = p3. Since the left-hand side of the equation is an even

number, it follows that also right-hand side of equation is also an even number, i.e.
that p = 2s, s ∈ Q. By including that in the preceding equation, equation 2q3 = p3

becomes 2q3 = 8s3, i.e. q3 = 4s3. From here, it turns out that q is also an even
number, which is in contradiction with the assumption that

p

q
is a real fraction, i.e.

that the smallest common divisor of p and q is 1.

It remains to show that 3
√

2 is not a constructible number.

Let us assume the opposite i.e. that the aforementioned construction is possi-
ble. As we saw in the previous paragraph, in that case x has to belong to a certain
field Fk which is an extension of a set of rational numbers, arrived at by consecutive
adding of square roots to the set of rational numbers.

Therefore, as we have shown that 3
√

2 is not a rational number, we may conclude
that x is not an element of the rational field F0, but instead belongs to another
extended field Fk, where k is a natural number. Let us assume that k is the smallest
natural number such that x belongs to the extended field Fk. As we saw that all
elements of an extension of a set of rational numbers by a certain square root may
be presented in the form of p + q

√
k, it follows that x may be written in the form

of x = p+ q
√

w, where p, q and w belong to certain field Fk−1, while
√

w does not.

Let us show now that if x = p + q
√

w is a solution of the cubic equation
x3 − 2 = 0, then y = p − q

√
w also is its solution. We saw that by applying the

basic rational operations (adding, subtracting, multiplying, dividing), as well as
applying the square root, we shall not exit a given field, then we may conclude
that as x belongs to the extended field Fk, then x3 − 2 also belongs to that field,
and from there it follows that x3 − 2 = a + b

√
w where a and b are from the

field Fk−1. By introducing x = p + q
√

w into the preceding equation, we get
(p + q

√
w)3 − 2 = a + b

√
w, where, after cubing the equation, is follows that

p3 + 3p2q
√

w + 3pq2w + q3w
√

w − 2 = a + b
√

w. By grouping the corresponding
factors, it follows that (p3 + 3pq2w − 2) + (3p2q + q3w)

√
w = a + b

√
w. Here it

may be noticed that a = p3 + 3pq2w − 2 and b = 3p2q + q3w. In order to show
that y = p − q

√
w is a solution of cubic equation y3 − 2 = 0, we switch values

of q with −q in expressions for a and b. It follows that a = p3 + 3pq2w − 2 and
b = −(3p2q + q3w) wherefrom it may be noticed that y3 − 2 = a− b

√
w.

As we have assumed that x is a solution of cubic equation x3−2 = 0, it follows
that a+b

√
w = 0. From here it follows that a = b = 0. Let us assume the opposite,

i.e. for example that b 6= 0. Then, from the equation a + b
√

w = 0 it would follow
that

√
w = −a/b, wherefrom we may conclude that

√
w belongs to the field Fk−1,

to which both a and b belong, which is contrary to the assumption. Therefore, it
must be valid that b = 0, and since a + b

√
w = 0 it follows that a = 0. So, with

this, we have proved that a = b = 0.

However, that conclusion takes us to the claim that y = p − q
√

w also is a
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solution of cubic equation y3 − 2 = 0, keeping in mind that y3 − 2 = a − b
√

w.
Let us notice that it is valid that x 6= y, i.e. x − y 6= 0, since x − y = 2q

√
w, and

2q
√

w = 0 only if q = 0, which consequentially leads to the conclusion that x = p,
i.e. x would belong to the field Fk−1, which is in contradiction with the assumption.

By this, we have proved the claim that if x = p + q
√

w is a solution of cubic
equation x3 − 2 = 0, then y = p − q

√
w is also its solution, where x 6= y. But,

we are thus facing a contradiction, because since p, q and
√

w are real numbers, it
follows that x and y are real numbers, which is in contradiction with the fact that
the equation x3 − 2 = 0 has only one real solution.

Thus, the initial assumption has led us to a contradiction, i.e. the solution of
the equation x3 − 2 = 0 cannot belong to the field Fk, therefore the duplication of
a cube using a compass and straightedge is impossible.

2.3. The connection between constructible and algebraic numbers

Let us now notice some of the links between constructible and algebraic num-
bers. Let us show that all constructible numbers are algebraic.

From the definition of algebraic numbers it follows that we claim that each
constructible number is a root of an nth degree polynomial.

Let start from the field F0, the field of rational numbers generated by one line
segment. Numbers in the field F1 are roots of a square equation, numbers from
F2 are roots of equation of the fourth degree, and, generally, numbers of the field
Fk are roots of an equation of 2k degree, with rational coefficients. Let us observe
any number from F2 field, in the form of x = p + q

√
w, where p, q, w are from F1,

i.e. of the form p = a + b
√

s, q = c + d
√

s, w = e + f
√

s where a, b, c, d, e, f, s are
rational numbers. By squaring the equation x = p+q

√
w we arrive to the equation

x2 − 2px + p2 = q2w, where all the coefficients are in field F , which is the field
generated by

√
s. Furthermore, this equation may be written in the following form:

x2 − 2(a + b
√

s)x + (a + b
√

s)2 = (c + d
√

s)2(e + f
√

s),
. . . . . .

x2 − 2ax + (a2 − c2e + b2s− d2es− 2cdfs) =

=
√

s(2bx + (−2ab + 2cde + c2f + d2fs)).

Keeping in mind that a, b, c, d, e, f, s are rational numbers, we come to the conclu-
sion that this equation may be presented in the form of x2 + ux + v =

√
s(rx + t)

where u, v, s, r, t are all rational numbers. By squaring this equation, we get an
equation of the fourth degree (x2 + ux + v)2 = s(rx + t)2 with rational coefficients,
as it was claimed.

It is worth noting that the opposite is not valid, i.e. that not all algebraic
numbers are constructible! We have shown that the roots of the third degree
equation x3 − 2 = 0, i.e. algebraic numbers, are not constructible.

F is the algebraic extension of the field Q, if each and every element from
F is algebraic over Q. If that polynomial does not exist, than the number α is
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transcendental over Q. Therefore, the numbers that are not algebraic are called
transcendental numbers. Liouville was the first to prove the existence of transcen-
dental numbers in 1844 and in 1851 he gave the first decimal representation of such
a number, the so-called Liouville constant:

∞∑

k=1

10−k! = 0.110001000000000000000001000 . . .

Some of the examples of transcendental numbers are the number π, as well as the
base of the natural logarithm e. Transcendental nature of number e was proved by
Hermite (1873), and of number π, by Lindemann (1882).
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