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Abstract. The paper is focused on educational practices which may enable
students to discover the property of interior angle bisector in a triangle with the help
of exploration of dynamic constructions. Interactive geometry software is used for
exploring relationships between geometrical objects, for transition from conjecture to
verification of a statement, and for development of discovered relationships. Second
part of the paper presents various methods to prove the formulated theorem based on
the similarity of triangles, trigonometric law of sines, and analytic method.
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1. Introduction

The properly selected problem situations in mathematics teaching could mo-
tivate students to investigation of object properties and relationships between ob-
jects, in order to identify unclarities, formulate questions and make conjectures.
Students’ mathematical abilities focused on reasoning and justification of state-
ments are developed by verification and proof of formulated conjectures, whereby
logical thinking of students is stimulated. Geometry provides many interesting
theorems, which can also be proved in mathematics teaching and which may of-
fer students new perspectives that reveal the beauty of geometric relationships.
In Principles and Standards for School Mathematics of NCTM [10], it is stated:
“Geometry is a natural place for the development of students’ reasoning and justi-
fication skills, culminating in work with proof.”

To meet these objectives in mathematics teaching, we can use mathematical
theorems which can be discovered and proved using different approaches. We can
reach deeper understanding of discovered relationships with explanation of their
interesting implications and applications. These objectives are also declared in
Principles and Standards for School Mathematics of NCTM [10]: “Students who
can use many types of reasoning and forms of argument will have resources for
more-effective reasoning in everyday situations.”

Interactive geometry software (IGS) provides advanced means of investigation
of properties of geometrical figures and a new access to direct manipulations of ge-
ometrical drawings. Experimentation and investigation of dynamic constructions
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allow discovering invariant properties of drawings and relationships between geo-
metrical objects. Manipulation with dynamic constructions promotes new didac-
tic possibilities to discovery patterns and relationships between geometric objects.
Diković [3] also emphasizes this property of technology: “The goal is to use tech-
nology to provide an environment for active exploration of mathematical structures
through multiple representations, or to show students some aspects of mathematics
that are not possible with pen and paper.” Exploration of more specific examples
of geometric shapes facilitates students to perceive and understand geometry in
dynamic environment which vitalizes the arena of experimental mathematics and
opens up mathematics classroom into scientific-like laboratory [9]. IGS provides
students possibilities to obtain empirical evidence as the source for insight that can
form the ground for further conjectures and generalizations. As Bruckheimer and
Arcavi [2] point out: “Geometrical theorems in ‘microworlds’ can become much
more than propositions waiting to be proven, they can become projects for inves-
tigation, which rely on the ease with which many instances of a proposition can be
obtained, analyzed, measured, and compared.”

A new generation of IGS has been developed in recent years. The systems
like GeoGebra (www.geogebra.org) represent multi-platform software that com-
bines dynamic geometry, calculus, and algebra. New geometric software Geometry
Expressions (www.geometryexpressions.com) introduces dynamic symbolic geom-
etry environment that provides advanced possibilities to generalize and justify geo-
metric relationships. This geometric system can automatically generate algebraic
expressions from geometric figures. As Todd [13] notes: “A Symbolic Geometry
system such as Geometry Expressions is an effective bridge between the two domi-
nant mathematics education technologies: dynamic geometry and CAS.” Algebraic
formulas provide ways to clear patterns more readily and use symbolic geometry in
mathematical reasoning and generalization.

The paper describes educational practices that may lead students to discov-
ering the property of interior angle bisector in a triangle using construction of the
figures in paper and pencil environment and exploration of dynamic constructions.
We tried to outline the possibilities of using IGS for transition from conjectures to
justifying claims and for development of discovered relationships.

The investigation of dynamic constructions should not reduce the justification
of statements on the basis of logical considerations in mathematics teaching. As
Izen [7] claims computer-based discovery activities in a geometry course should be
followed by rigorous proofs of the conjectures. This paper also uses the idea of
using mathematical theorem which may be discovered by students on their own
with the help of exploration of dynamic constructions:
(1) The bisector of any angle of a triangle divides the opposite side into two seg-

ments that are proportional to the other two sides.
This theorem is proved in the above mentioned paper by means of similarity

of triangles and relationships between angles, which are determined by a line in-
tersecting a pair of two parallel lines. We would like to extend the ideas presented
in this paper and to describe other approaches to investigation of this theorem in
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mathematics teaching. Main objectives of this paper are to design a lesson plan for
guiding students through exploration of constructions to discovery and verification
of relationships between geometrical figures described in theorem (1) and to apply
various methods to prove it starting with the use of similarity of triangles up to
analytic proof based on vector calculus. IGS will be used in order to make patterns
visible more readily and to enhance student learning in certain stages of the les-
son. Discovered and proved relationships are used for derivation of an interesting
implication about properties of Apollonius circle at the end of the paper.

Scheme of teaching focused on discovery, justification and verification of the
property of the interior angle bisector in a triangle is divided into four parts. Lesson
plan is based on a model of the interactive geometry approach described by Sch-
er [12]. This model contains four phases that lead naturally from visual evidence
to deductive argument: visualization, hands-on exploration, dynamic software in-
vestigation, deductive reasoning.

2. Initial exploration in paper and pencil environment

Due to the fact that the ratios of lengths of segments are referred to in theorem
(1), it would be appropriate to repeat the construction of segments with the given
ratio of their lengths derived from similarity of triangles before the beginning of the
lesson. Given a triangle ABC, let points F , G be the midpoints of sides AC, BC.
According to triangle similarity test SAS, triangles ABC and FGC are similar.
Therefore FG and AB are parallel and we have AC/BC = FC/GC. Let also
the length m of the segment be given. How could a segment with length x be
constructed so as to have x/m = AC/BC? We construct the point M on ray
CB so that CM = m. Then we draw a line p ‖ AB through the point M and
we construct the point K ∈ CA ∩ p, for which CK = x. According to triangle
similarity it can be easily shown that CK/AK = CM/BM . The final construction
is shown in Fig. 1. We will use this knowledge to check the correctness of theorem
(1) using IGS, and also for its proof.

Fig. 1 Fig. 2

The following problem is presented to students at the beginning of the lesson:
The line o is angle bisector of interior angle ∠C in triangle ABC. It intersects the
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opposite side AB in the point P . Find relationships among AP , PB and lengths
of sides of triangle ABC, which contain the vertex C.

Visualization
At first, students should make a construction in paper and pencil environment

for the understanding of the problem (see Fig. 2).
The point S is the midpoint of side AB. Visualization of the investigated

objects can help students in the first phase of problem solving focused on the
exploration of a simple special case: If we construct the angle bisector of interior
angle ∠C in triangle ABC, when is the point P identical with the point S?

Isosceles triangles with base have this property. Can this case also happen in
other triangles? If P ≡ S then we can take point D on angle bisector o so that
DS = SC. Thus triangle ABC can be completed into a parallelogram ADBC.
One can easily prove that the parallelogram ADBC is a rhombus. Hence triangle
ABC has to be isosceles.

Hands-on exploration
After the special case resolution students will find out where the point P lies,

if the explored triangle is not isosceles. Students could construct another triangle
ABX and angle bisector o′ of interior angle ∠X so that the point X ∈ o (see Fig. 3).
Also in this case the intersection point between o′ and the side will be labelled P .

Fig. 3 Fig. 4

Students could look for an answer to the following question: How does the
position of the point P on side AB relate to the position of the point X in one
of the half-planes oA, oB? This problem is more difficult than the first partial
problem. Students would be able to notice that the points X and P lie in the same
half-plane determined by perpendicular bisector o.

At this stage of the investigation students might feel intuitively that the dis-
tance between points X and A influences the position of the point P . The purpose
of the third construction is to explore this dependence more precisely. This con-
struction also leads students to focus on the ratio of the lengths of sides AX and
BX. Side AB with length 5 cm is divided into 10 equal parts. Students are required
to construct a not isosceles triangle ABX with integer sides, so that the following
equation holds: AX + BX = 10 cm. There are several pairs of integers that can
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be chosen for the lengths of sides AX, BX (for example (1, 9), (2, 8), (3, 7), (4, 6),
. . . ). It can happen that triangle ABX does not exist for any chosen pairs of
integers (e.g. (1, 9), (2, 8)). Figure 4 shows triangle ABX with AX = 3 cm and
BX = 7 cm. The point P divides side in the ratio 3 : 7.

As a result of exploration of different particular cases, students could be able
to make conjectures which express the following relationship: when one side is
made smaller compared to the other side of the triangle, the point P approaches
the vertex lying on the shorter side. At this stage of problem solving a transition
from this conjecture to comparison of the ratios of the lengths of the corresponding
sides of the triangle and AP , PB is natural.

The proposed lesson plan was partially tested in classroom practice for 15-
year old students at a Slovak grammar school (first grade) during one class. After
construction of the triangle ABC with the angle bisector of interior angle ∠C, the
students solved the initial problem, correctly finding that the point P is identical
with the point S in isosceles triangles. Most students reasoned that the angle
bisector of interior angle ∠C is identical with a perpendicular bisector of side AB.
The majority of students found out and noted down in their own words the fact that
points X and P lie in the same half-plane determined by perpendicular bisector of
side AB.

Many students were not convinced that construction of one specific example
was sufficient enough for the solution of the last problem of the Hands-on explo-
ration phase. They constructed two special triangles ABX with integer sides for
which the term AX + BX = 10 cm applies. But even the construction of two spe-
cific examples was not sufficient for most of the students to formulate a statement
corresponding to theorem (1). Only two students (the 1/8 of number of students
in the class) were able to express the general relationship between the lengths of
segments: AP/PB = AX/BX. Many students’ conjectures were equivalent to the
statement: numbers of parts expressing the distance of the point P from vertices
A, B are equal to the lengths of sides AX, BX. Some students characterized the
position of the point P more accurately by means of relationships: AP = AX/2
and PB = BX/2.

IGS could be incorporated into the exploration of this problem to test several
specific examples which would help to revise errors in students’ statements. Stu-
dents can use the dynamic nature of the software to help them gain confidence in
the conjectures they have made. Additionally, students can ask other questions by
making and exploring the constructions to which finding answers is rather difficult
in paper and pencil environment. For example, we can ask the following question:
Where could other vertices X of triangle ABX lie so that angle bisector o′ of interi-
or angle ∠X also divides side in the ratio 3 : 7? Colette Laborde [8] refers that the
role of visualization in geometry remained hidden in paper and pencil environment
because of the very low level of reliability of the production of drawings and the
very small number of possible experiments. IGS would allow students to quickly
make accurate drawings of different triangles. Therefore we will proceed to inves-
tigation of dynamic constructions with IGS for the review of students’ conjectures
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and for a deeper understanding of relationships between geometrical objects.

3. Investigation of triangles using dynamic constructions

Three dynamic constructions represent the basis of stimulative learning envi-
ronment, in which students can explore property of an interior angle bisector in a
triangle. The teacher prepares these constructions together with instructions for
students before the lesson. According to Chazan and Yerushalmy [5] teachers using
geometry construction program try to create experimental environments where col-
laborative learning and student exploration are encouraged. Subsequently, students
would be led to discover and formulate theorem (1) with the help of exploration of
different particular cases in dynamic constructions under teacher’s guidance. The
simple logical considerations will be used for the initial verification of theorem (1)
in the third dynamic construction.

At first, students will explore different triangles using dynamic construction
that corresponds to the construction in Fig. 3. Dragging the point C along the
angle bisector o of interior angle ∠C, which is simultaneously the perpendicular
bisector of side AB, forms isosceles triangles. The point P is identical with the
point S. We draw a simple conclusion: if AC = BC, then AP = PB. If a vertex of
a triangle does not lie on the line o (it is labelled as X), then the point P ∈ o′∩AB
is always situated in the same half-plane determined by line o, in which point X
also lies.

For the justification of this statement triangle ABX can be completed into a
parallelogram ADBX (see Fig. 5). The point S is the midpoint of side AB and it
is also the intersection point of the parallelogram diagonals.

Fig. 5

Since AD > AX in triangle ADX then ∠X − ∠y > ∠y and thus we have
∠y < (∠X)/2. Therefore the point P ∈ AS. Students can observe the position
of the point P by changing the position of the point X: the shorter one length
of changed side is to another changed side, the nearer the point P is to a vertex,
which lies on shorter side.

The next dynamic construction is focused on the investigation of the ratio of
the lengths of sides AX and BX. This construction is derived from the construction
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in Fig. 4. Students can explore the position of the point P in different triangles
ABX with integer sides. Side AB with length 3 cm is divided into 6 equal parts
(see Fig. 6).

Fig. 6

There is a coordinate system with grid points of integer coordinates used.
The lengths of horizontal segments AX, BX determine the lengths of the sides of
triangle ABX. Therefore the radii of circles m, n are interconnected with them.
The right end-points of horizontal segments AX, BX and the point B can be
dragged only on the grid points in horizontal direction. The midpoints between two
adjacent grid points are made on hidden ray AB. Students can easily construct
different triangles with integer sides and focus on the cases when the point P
lies in some of the marked points on side AB. Now they can return to triangles
with the length of side AB equal to 5 cm, which were constructed in paper and
pencil environment. Exploration of triangles with different side lengths should lead
students to formulate statements corresponding to theorem (1).

This dynamic construction can be also used for solving other tasks which enable
students’ deeper understanding of relationships between the ratios of the lengths
of the segments in the triangles. The first task involves a construction of a triangle
ABX in which a length of side BX is not given: Construct triangle ABX with sides
AB = 6 cm and AX = 2 cm so that angle bisector of interior angle ∠X intersects
side AB in the point P which is at distance of 1.5 cm from the point A. Now, side
is divided into 12 equal parts and the following equation holds: AP/PB = 3/9.
According to theorem (1) we have 2/BX = 3/9 and the length of side is equal
to 6 cm. After this calculation students can change the lengths of the horizontal
segments AX, BX and the length of side AB in the dynamic construction (see
Fig. 7).

The lengths of two sides of a triangle are not given in the second task: Con-
struct a triangle ABX with AX = 4 cm so that angle bisector of interior angle
∠X intersects side in the point P which is at distance of 3 cm from the point A.
Students can use the lengths of the segments expressed in cm in solving this task.
An isosceles triangle with AX and BX equal to 4 cm and AB equals to 6 cm is
a trivial solution of the task. We use the ratios of the lengths of segments in a
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Fig. 7

triangle to find other solutions: 3/PB = 4/BX. Expressing the ratio PB/BX
we have: PB/BX = 3/4. The case PB = 3 cm, BX = 4 cm leads to the above-
mentioned trivial solution. From the equation PB/BX = 6/8 we have PB = 6 cm
and BX = 8 cm. If we substitute the ratio 3/4 by the ratios 9/12, 12/16, . . . then
we get other solutions.

The third dynamic construction can be used for the initial verification of the-
orem (1) with the help of relationships between similar triangles.

Fig. 8

We present to students a dynamic construction (see Fig. 8) with points D,
E on sides of triangle ABC satisfying CD = AP and CE = PB. If equality
CD/AC = CE/BC holds, then triangles CDE and CAB are similar according to
test SAS. How could we verify by adding other figures or by determining properties
of constructed figures, whether theorem (1) holds for different triangles ABC?
For example, if we draw a line p ‖ AB through the point D, then p has to pass
through the point E. When we move the vertices of triangle ABC, line p always
passes through the point E. Although the described method is not a proof of
theorem (1), such tasks can develop students’ abilities to use properties of figures
and relationships between them for making good mathematical arguments. The
purpose of this dynamic construction is also to direct students’ attention to use
triangle similarity in proof of theorem (1).

We have used this dynamic construction for exploration of different triangles
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in search of a counterexample, which would contest the general statement. If the
general statement were false, we would probably quickly succeed in finding of a
counterexample as a result of exploration of different particular cases with the help
of IGS. Dynamic properties of IGS allow reasoning at a new level based on providing
immediate feedback on errors. As Chazan [4] noted: the development of Cabri-like
environments, on the contrary, contributed to the support of changes in teaching
by stimulating conjecturing and the renewal of dialectical relationships between
proofs and refutations. Of course the fact, that we find no counterexample, does
not mean that the statement holds, and therefore rigorous proof has to follow.

The students of the experimental class used the second dynamic construction
(see Fig. 6) to also try the examples when the length of side AB was 5 cm and
AX + BX = 20 cm (for example (8, 12)) and AX + BX = 15 cm (for example
(9, 6)). The majority of students were able to formulate a statement corresponding
to theorem (1) after these explorations. The proof of theorem (1) was performed
under the teacher’s guidance using relationships (6) for areas of triangles APX and
PBX in the last phase of the lesson.

4. Proofs based on similarity of triangles

Division of a segment into two parts in the given ratio displayed in figure 1
can be used for a proof of theorem (1). Without loss of generality we can assume
that AC ≤ BC holds in triangle ABC. It can be completed by the point D, which
lies in an intersection of ray BC and a line drawn through the point A parallel to
the interior angle bisector o (see Fig. 9). These relations hold: ∠CAD = ∠ACP
and ∠PCB = ∠ADC.

Fig. 9 Fig. 10

Since ∠ACP = ∠PCB, so interior angles in triangle DAC on side are equal
and triangle DAC is isosceles (AC = DC). Thus the segment is divided by the
point C in the ratio BC/AC, which is equal PB/AP .

Triangle ABD can be also used for the proof of the converse theorem of the-
orem (1). Let us assume that a line o divides interior angle ∠C into two parts
and it intersects side AB in the point P , for which PB/AP = BC/AC. Then we
can show that a line o is the angle bisector of interior angle ∠C. Since AD ‖ BC,
triangles BPC and BAD are similar according to test AA. Thus segment BD
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is divided by the point C in the ratio PB/AP . According to the assumption,
we have PB/AP = BC/AC, hence CD = AC. Triangle DAC is isosceles and
∠CAD = ∠ADC, but then also ∠ACP = ∠BCP .

For a better understanding of a proof of theorem (1), we can show that anal-
ogous theorem holds for exterior angle bisector at the vertex C in triangle ABC:
(2) The angle bisector o′ of exterior angle at the vertex C in triangle ABC inter-

sects line AB in the point Q, for which QA/QB = AC/BC holds.
To prove this theorem we again draw line p through the point A parallel to angle

bisector o′ (see Fig. 10). Let us label points Q ∈ o′∩AB, R ∈ p∩BC. Analogously
as in the proof of theorem (1), there are the following relations: ∠QCZ = ∠ARC
and ∠QCA = ∠CAR.

Since angle bisector o′ divides angle ACZ into two equal angles, triangle ARC
is isosceles, and we have AC = RC. Triangle similarity ABR ∼ QBC implies:
AB/QB = BR/BC. We obtain:

QB −QA

QB
=

BC − CR

BC
⇐⇒ 1− QA

QB
= 1− AC

BC
⇐⇒ QA

QB
=

AC

BC
.

Analogously as for theorem (1) we can show that converse theorem of theorem (2)
also holds: If a line q passes through the vertex C in triangle ABC and it intersects
line AB in the point Q, which does not lie on side AB, and QA/QB = AC/BC
holds, then the line q is the angle bisector of exterior angle at the vertex C.

5. Proofs with the use of trigonometric law of sines
and areas of triangles

The interior angles in triangle ABC are labelled as in figure 11.

Fig. 11

The trigonometric law of sines can be applied to express the ratio of the lengths
AC, BC:

(3)
BC

sin x
=

AC

sin y
;

sin x

sin y
=

BC

AC
.

Similarly, the following relations hold for triangles APC and PBC:

(4)
PC

sinx
=

AP

sin z
;

PC

sin y
=

PB

sin z
.
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After expressing PC from both equations (4) and comparing the obtained expres-
sions we have:

(5)
sinx

sin y
=

PB

AP
.

Using relations (3) and (5) we finally get the equation BC/AC = PB/AP which
completes the proof of theorem (1).

We focus on the areas of triangles APC and PBC (see Fig. 11) to find another
way to prove theorem (1). Since triangles APC and PBC have identical altitudes
constructed from vertex C, so we have for the ratio of their areas S4APC/S4PBC =
AP/PB. These areas can be also expressed with the help of sines of the interior
angles at vertex C. We use the following formulas for the calculation of areas of
triangles APC and PBC:

(6) S4APC =
1
2
AC · PC sin(∠ACP ) and S4PBC =

1
2
PC ·BC sin(∠PCB).

Since line o is the angle bisector of interior angle ∠C, so we obtain with the help
of the relations (6) S4APC/S4PBC = AC/BC and thus AP/PB = AC/BC.

6. Proofs by analytic method

For other way of proving theorem (1), we can use analytic method based on
the basic elements of vector calculus. A starting point for the proof is the choice of
a suitable coordinate system and expression of relationships between objects. We
choose oblique coordinate system in a plane. The coordinate axes are determined
by line AB and the angle bisector of interior angle ∠C in triangle ABC. Figure 12
shows the coordinates of the vertices of triangle ABC in the coordinate system.

Fig. 12

The vertices of triangle ABC and the point P ∈ o ∩ AB are used for the
definition of vectors: b =

−→
CA, a =

−→
CB, u =

−→
AP and v =

−→
PB. A vector b′ is
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the reflected image of the vector b reflected across the angle bisector o, and vector
s =

−→
CD = b + b′. The vectors u, v defined in this way are linearly dependent, and

also b′, a are linearly dependent vectors:

(7) v = k · u, a = t · b′, and k, t ∈ R+.

To prove theorem (1) we have to show, that vectors v, a are equal real multiples
of vectors u, b′, thus:

(8) k = t.

We calculate the coordinates of these vectors:

u = PA = (−a, 0), v = BP = (b, 0),

a = BC = (b,−c), b = AC = (a,−c),

s = DC = (0, d− c), b′ = sb = (−a, d).

We have:

v = k · u ⇐⇒ b = k · (−a), and 0 = k · 0 ⇐⇒ k = b/(−a)

a = t · b′ ⇐⇒ b = t · (−a), and c = t · d ⇐⇒ t = b/(−a) = −c/d

}
=⇒ k = t.

Since a < 0, and b > 0, k and t are equal positive real numbers and validity of
theorem (1) is proved.

7. Transition from the ratios of the lengths
of segments to Apollonius circle

At the end of the lesson, we return to the question which was raised at the end
of the Hands-on exploration. A simple dynamic construction can be made according
to the construction displayed in Fig. 3. We construct angle bisector o of interior
angle ∠X, the point P ∈ o∩AB, the midpoint S of side AB and a midpoint of AS.
Students will be required to move the point X, and to find such triangles ABX,
that the point P lies at the midpoint of AS. Figure 13 shows several such positions
of the point X in one half-plane determined by line AB. Since AP/PB = 1/3, so
the ratios AX/BX in these triangles also equal to 1/3 according to theorem (1).
In what figure do the vertices X lie in triangles ABX?

Fig. 13
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To find an answer to this question, students can use advantages of IGS, and
they may subsequently visualize unknown figure by means of manipulation of the
dynamic construction. After location of a suitable position of the point X, it is
possible to create a new free point and to place it on the point X. When dragging
the point X, free point stays in its position. By means of experimentation with
a dynamic construction, students should be able to find out that the points X lie
on a circle. At the initial stage of solving such problems, IGS enables students
to discover unknown figures and to make conjectures. Experimentally discovered
relationships and features of examined objects are the basis for additional stages of
problem solving focused on logical justification of the statement and generalization
of the solution.

To make dynamic construction for detailed drawing of unknown figure, the
technique for the construction of segments with the given ratio of their lengths
can be used. The basis of the dynamic construction is not experimental finding
of suitable positions for the point X, but the construction of such points X for
which AX/BX = 1/3. Students might independently make a construction for
drawing unknown figure. Activation of trace for intersection points of two circles,
which determine required locations of the point X, can be used for visualization of
unknown figure. Figure 14 shows one of the possibilities of making such dynamic
construction.

Fig. 14

Similarity of triangles is used to determine the lengths of segments AX, BX for
which AX/BX = 1/3. An arbitrary additional ray PT is drawn after construction
of the points A,B, S, P and line AB. The point P is the midpoint of segment AS.
The point E is constructed on ray PT so that PE = AP . The segments with
the ratio of their lengths equal to 1/3 can be easily constructed with the help of
triangle PBE. The point Y is an arbitrary specific point on ray PT . The length
of segment PY represents the length of segment AX. We can draw a line parallel
to segment BE through the point Y for the determination of corresponding length
of segment BX. The point F satisfying PY/PF = 1/3 lies in the intersection of
this line with line AB. Then we construct the circles k(A,PY ) and m(B, PF ).
The intersection points of these circles determine suitable positions of the point X.
Movement of the point Y along ray PT evokes re-drawing the circles k, m and we
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obtain different positions of the point X. We turn on trace for both intersection
points of the circles k, m to draw unknown figure.

With the help of the dynamic construction, we have constructed the points
of a circle, which is called Apollonius circle. This circle intersects line AB in the
points P and Q. We have AP/PB = QA/QB. Segment QP is the diameter of
Apollonius circle. We have come to the conclusion:
(9) The set of all points in plane having constant ratio of distances to two fixed

points A and B is a circle.
To prove theorem (9) we use triangle ABC with the angle bisector o of interior

angle ∠C. According to theorem (1) we have for the point P ∈ o∩AB, AP/PB =
AC/BC. Since theorem (2) and its converse theorem hold, so the point Q differing
from the point P exists on line AB and QA/QB = AC/BC. The point Q lies
on the angle bisector o′ of exterior angle at the vertex C in triangle ABCE (see
Fig. 15).

Fig. 15

We have ∠ACZ + ∠ACB = 180◦. Since angle bisectors o and o′ bisect the
corresponding angles, then ∠QCP = ∠ACZ/2 + ∠ACB/2 = 90◦. We have found
out that pairs of the lines passed through arbitrary points having constant ratio
of distances to two fixed points A, B and through the points P , Q make a right
angle. According to Thales’s theorem, the set of all such points forms a circle with
diameter QP , without the points P , Q. But the points P , Q have the same ratio
of distances to two fixed points A, B as other points of the circle, therefore they
belong to Apollonius circle.

8. Conclusion

Our paper is aimed at presenting the fact that geometrical problems may offer
interesting possibilities of using IGS for the purpose of conducting such activities
that will enable students to discover and justify relationships between geometrical
objects. By exploring the ratio of the distances of the point from two given points we
get to the circle. The described approach can be used and developed in investigation
of sums and differences of the distances of the points from two given points. The
lesson plan based on this approach could enable students to go from the circles to
other types of conics.

Important objectives of mathematics teaching are to support changes in teach-
ing by means of stimulating conjecturing, and to develop students abilities to logical
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justification of discovered relationships. The exploration of particular cases, mak-
ing of conjectures, generalization of discovered relationships, and rigorous proofs of
the formulated theorems should be used together as complementary processes in
order to enable deeper understanding of mathematical knowledge.
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[3] L. Diković, Interactive learning and teaching of linear algebra by web technologies: some
examples, The Teaching of Mathematics, X, 2 (2007), 109-116.

[4] D. Chazan, Quasi-empirical views of mathematics and mathematics teaching, Interchange
21 (1) (1990), 14–23.

[5] D. Chazan and M. Yerushalmy, Charting a course for secondary geometry, in: R. Lehrer &
D. Chazan, New directions in the Teaching and Learning of Geometry, Erlbaum, Hillsdale,
NJ, preprint, 1995.

[6] C. Christou, N. Mousoulides, M. Pittalis and D. Pitta-Pantazi, Proofs through exploration
in dynamic geometry environments, Proceedings of the 28th Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, 2004.

[7] P. S. Izen, Proof in modern geometry, Mathematics Teachers 91, 8 (1998), 718–720.

[8] C. Laborde, The Computer as part of the learning environment: The case of geometry,
in: C. Keitel & K. Ruthven, Learning Through Computers, Mathematics and Educational
Technology, Springer Verlag, Berlin, 1993, pp. 48–67.

[9] A. Leung and C. M. Or, From construction to proof: explanations in dynamic geometry
environment, in: Woo, J. H., Lew, H. C., Park, K. S. & Seo, D. Y. (Eds.), Proceedings of the
31st Conference of the International Group for the Psychology of Mathematics Education,
Vol. 3, 2007.

[10] National Council of Teachers of Mathematics (NCTM), Principles and Standards for School
Mathematics. Reston, VA: NCTM, 2000.

[11] R. J. Quinn and T. S. Ball, Explore, conjecture, connect, prove: The versatility of a rich
geometry problem, Mathematics Teachers 101, 1 (2007), 8–11.

[12] D. Scher, Dynamic visualization and proof: A new approach to a classic problem, Mathe-
matics Teachers 96, 6 (2003), 394–398.

[13] P. Todd, Recursive Napoleon-like constructions investigated with a symbolic geometry sys-
tem, The Journal of Symbolic Geometry, 1, 2006.
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