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CONVEXITY OF THE INVERSE FUNCTION
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Abstract. This note answers the following question: Having an invertible convex
real valued function f : A → R, what can be said about convexity of f−1?
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The intention of this author is to sketch a research theme for students of special
mathematical schools (for example, mathematical gymnasia). The conditions under
which two functions f and f−1 are convex (concave) in the same time are not found
in the current books on calculus. Thus, a teacher should let her/his students get
acquainted with all involved concepts leaving the question of these conditions open.

It is well known that if an invertible function f is increasing (decreasing), its
inverse is of the same type. The question arises: what can be said about convexity
of f and f−1?

Probably we would think first of the exponential function y = ex and the
function y = x2 and conclude that convexity of one of the functions f or f−1

implies concavity of the other. But examples of the functions such that f and f−1

are both convex (concave) exist in abundance, one of them being y =
1
x

which is
inverse to itself! So, the next question is: Is there any rule?

Recall that a real function f defined on an interval A ⊂ R is convex on A if
for each x1, x2 ∈ A and α1, α2 ∈ [0, 1] such that α1 + α2 = 1

(1) f(α1x1 + α2x2) 6 α1f(x1) + α2f(x2)

holds.
If in (1) the inequality < (respectively >, >) takes place, the function is strictly

convex (respectively concave, strictly concave).
The above convexity condition is equivalent to (see [1]): For every three points

x1, x, x2 ∈ A such that x1 < x < x2

(2)
f(x)− f(x1)

x− x1
6 f(x2)− f(x)

x2 − x

is true.
A well-known fact is that a two times differentiable function f on an interval is

convex (concave) if and only if its second derivative f ′′ is nonnegative (nonpositive).
(See [1] or [3].) Thus we easily prove the next statement.
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Proposition 1. Let f : (a, b) onto→ (c, d) ⊂ R be two times differentiable func-
tion, f−1 : (c, d) → R be its inverse, and let f ′(x) 6= 0.

(1) If f and f−1 are decreasing functions, convexity of one of them implies
convexity of the other.

(2) If f and f−1 are increasing functions, convexity of one of them implies
concavity of the other.

Proof. For x = f−1(y) the following holds: (f−1)′(y) =
1

f ′(x)
and

(f−1)′′(y) =
(

1
f ′(x)

)′
(y) =

d

dx

(
1

f ′(x)

)
x′(y) =

−f ′′(x)
f ′(x)2

x′(y) =
−f ′′(x)
(f ′(x))2

· 1
f ′(x)

where x = f−1(y).
(1) If f is a decreasing function then f ′(x) < 0, so (f−1)′′(y) and f ′′(x) have

the same sign.
(2) If f is an increasing function then f ′(x) > 0, hence (f−1)′′(y) and f ′′(x)

have opposite signs.
To prove the general case we use the following statement concerning continuity

of convex functions (see [2, Chapter 1, Section 4.3], or [4, Tvrdjenje 2.3]).

Theorem 1. Let f : (a, b) → R be a convex function. Then
1. f is continuous on (a, b);
2. at each point x ∈ (a, b) there exist the left-hand derivative f ′−(x) and the right-

hand derivative f ′+(x);
3. the set of points in which f is not differentiable is at most countable.

Proof. First we prove 2. Then, being continuous from the left and the right at
each point x, the function f is continuous on (a, b).

Let x, t ∈ (a, b), x 6= t. Denote by ν(x; t) =
f(x)− f(t)

x− t
the slope of the

line segment passing through the points (x, f(x)), and (t, f(t)). Clearly, ν(x; t) =
ν(t; x). The condition (2) can be rewritten as

(2′) ν(x;x1) 6 ν(x;x2).

Note that
f(x)− f(x1)

x− x1
6 f(x2)− f(x)

x2 − x
is equivalent to

f(x)− f(x1)
x− x1

6 (f(x)− f(x1)) + (f(x2)− f(x))
(x− x1) + (x2 − x)

=
f(x2)− f(x1)

x2 − x1

and
f(x2)− f(x1)

x2 − x1
=

(f(x)− f(x1)) + (f(x2)− f(x))
(x− x1) + (x2 − x)

6 f(x2)− f(x)
x2 − x

.

By renumbering the points we get ν(x; t1) 6 ν(x; t2) for x < t1 < t2 and
ν(x; t1) 6 ν(x; t2) for t1 < t2 < x. Thus, for a fixed x ∈ (a, b) the slope function
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ν(x; t) ≡ ϕ(t) is an increasing function. There exist limt→x− ν(x; t) = f ′−(x) and
limt→x+ ν(x; t) = f ′+(x). Moreover, f ′−(x) 6 f ′+(x) by (2′).

3. The statement is proved in the standard way using the fact that the set Q
of rational numbers is dense in R.

Remark. That a convex function f : [a, b] → R need not be continuous at the
end points can be seen from the following example. Let f(x) = x2 for −1 < x < 1,
and f(x) = 2 for x ∈ {−1, 1}.

Proposition 2. Let f : (a, b) onto→ (c, d) ⊂ R be a convex function and let
f−1 : (c, d) → R be its inverse.

(1) If f is increasing then f−1 is increasing and concave.

(2) If f is decreasing then f−1 is decreasing and convex.

Proof. Being continuous and invertible on (a, b) the function f is strictly
monotone (as well as its inverse) and convex. Let c < y1 < y < y2 < d and let x, x1

and x2 be the unique points from (a, b) for which f(x) = y, f(xi) = yi, i = 1, 2
hold.

(1) If f is increasing then x1 < x < x2 and from
y − y1

x− x1
6 y2 − y

x2 − x
it follows

that
x− x1

y − y1
> x2 − x

y2 − y
. Hence f−1 is concave.

(2) If f is decreasing then x1 > x > x2, so from
y − y2

x− x2
6 y1 − y

x1 − x
it follows

y2 − y

x− x2
> y − y1

x1 − x
(> 0), hence

x− x2

y2 − y
6 x1 − x

y − y1
, i.e.

x2 − x

y2 − y
> x− x1

y − y1
and f−1 is

a convex function.

Proposition 3. Let f : [a, b] onto→ A ⊂ R be a convex and invertible function
and let f−1 be its inverse.

(1) If f is increasing then f−1 is concave on each interval I ⊂ A.

(2) If f is decreasing then f−1 is convex on each interval I ⊂ A.

Proof. Let f1 = f |(a, b). The restriction f1 is monotone on (a, b). Let c =
limx→a+ f(x) and d = limx→b− f(x). It must be f(a) > c and f(b) > d.

If f is continuous at a or b, then for its inverse function on the interval f([a, b)),
respectively f((a, b]), Proposition 2 holds.

If f(a), f(b) > max{c, d}, then for f−1 Proposition 2 holds on the interval
f(a, b).

(1) If f is increasing on (a, b), and f(a) = d, then f−1 is concave on (c, d].

(2) Dually, if f is decreasing on (a, b), and f(b) = c, then f−1 is convex on
(d, c].
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