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CONVEXITY OF THE INVERSE FUNCTION
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Abstract. This note answers the following question: Having an invertible convex
real valued function f: A — R, what can be said about convexity of f~17?
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The intention of this author is to sketch a research theme for students of special
mathematical schools (for example, mathematical gymnasia). The conditions under
which two functions f and f~! are convex (concave) in the same time are not found
in the current books on calculus. Thus, a teacher should let her/his students get
acquainted with all involved concepts leaving the question of these conditions open.

It is well known that if an invertible function f is increasing (decreasing), its
inverse is of the same type. The question arises: what can be said about convexity
of fand f~1?

Probably we would think first of the exponential function y = e* and the
function y = 22 and conclude that convexity of one of the functions f or f—!
implies concavity of the other. But examples of the functions such that f and f~!

1
are both convex (concave) exist in abundance, one of them being y = — which is
inverse to itself! So, the next question is: Is there any rule? r
Recall that a real function f defined on an interval A C R is convex on A if
for each z1,29 € A and a1,y € [0, 1] such that ay + as =1
(1) flaamy + azz2) < a1 f(z1) + ez f(x2)
holds.

If in (1) the inequality < (respectively >, >) takes place, the function is strictly
convex (respectively concave, strictly concave).

The above convexity condition is equivalent to (see [1]): For every three points
T1,2, T2 € A such that 21 <z < 29

(2) f($> — f('rl) < f(.’IJg) — f(x)

X
Tr — To — T
is true.

A well-known fact is that a two times differentiable function f on an interval is
convex (concave) if and only if its second derivative f” is nonnegative (nonpositive).
(See [1] or [3].) Thus we easily prove the next statement.



22 M. Mrsevié

onto

PROPOSITION 1. Let f: (a,b) = (¢,d) C R be two times differentiable func-
tion, f~1: (¢,d) — R be its inverse, and let f'(x) # 0.

(1) If f and f~' are decreasing functions, convezity of one of them implies
convezity of the other.

(2) If f and f~! are increasing functions, convexity of one of them implies
concavity of the other.

Proof. For x = f~(y) the following holds: (f7)"(y) = % and

“1yn 1y d (1 / —f"(x) , —f(x) 1
0= (57) 0= 5 (70) 79 = For 0 = Forr 7
where z = f~1(y).

(1) If f is a decreasing function then f/(z) < 0, so (f~!)”(y) and f”(x) have
the same sign.

(2) If f is an increasing function then f’(z) > 0, hence (f~1)"(y) and f”(z)
have opposite signs. m

To prove the general case we use the following statement concerning continuity
of convex functions (see [2, Chapter 1, Section 4.3], or [4, Tvrdjenje 2.3]).

THEOREM 1. Let f: (a,b) — R be a convex function. Then
1. f is continuous on (a,b);

2. at each point x € (a,b) there exist the left-hand derivative f’ (x) and the right-
hand derivative f! (x);

3. the set of points in which f is not differentiable is at most countable.

Proof. First we prove 2. Then, being continuous from the left and the right at
each point z, the function f is continuous on (a,b).

flz) = f()

Let z,t € (a,b), x # t. Denote by v(x;t) = the slope of the
x
line segment passing through the points (z, f(x)), and (¢, f(¢)). Clearly, v(z;t) =

v(t; x). The condition (2) can be rewritten as

(2" v(z;z1) < vix;xs).
Note that f(x:Z : i(xl) < f(x;) : i(m) is equivalent to
flx) = fla) _ (f@) = f(20)) + (f(22) = f(&) _ flz2) = f(z1)
T — 2 = (x —x1) + (22 — x) Ty — 1
and
fxo) = fz1) _ (fz) = f(z1)) + (f(z2) = f(=z)) _ flaz) =~ f(2)
To — T1 (x —z1) + (z2 — ) S xe—z

By renumbering the points we get v(z;t1) < v(z;ts) for z < t; < ty and
v(z;ty) < v(x;ts) for t; < to < x. Thus, for a fixed z € (a,b) the slope function
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v(x;t) = (t) is an increasing function. There exist lim;—,,— v(z;t) = f’ (z) and
limy .,y v(x;t) = fi (x). Moreover, f’ (z) < f) (x) by (2').

3. The statement is proved in the standard way using the fact that the set Q
of rational numbers is dense in R. m

REMARK. That a convex function f: [a,b] — R need not be continuous at the
end points can be seen from the following example. Let f(z) = 22 for —1 < z < 1,
and f(z) =2 for x € {-1,1}.
onto

PROPOSITION 2. Let f: (a,b) — (¢,d) C R be a convex function and let
f7t: (e,d) — R be its inverse.

(1) If f is increasing then f~1 is increasing and concave.

(2) If f is decreasing then f~' is decreasing and convex.

Proof. Being continuous and invertible on (a,b) the function f is strictly
monotone (as well as its inverse) and convex. Let ¢ < y1 < y < y2 < d and let x, 24
and x2 be the unique points from (a,b) for which f(z) =y, f(x;) = yi,i = 1,2
hold.

Y= ~9%»2-Y

< it follows
Xr — X X9 — T

(1) If f is increasing then 1 < z < x2 and from

T—z To — T
that Ly 22 . Hence f~! is concave.

Yy—un Y2 —y

(2) If f is decreasing then x1 > x > 9, so from y— 42 < Y175 it follows

T — T2 1 — T
— — T—T T — To—T _ T—X

279,970 (> 0), hence 2 ¢t e =2 > Land 1 is
T — X2 T —T Y2 —y Yy—un Y2 —y Yy—4hn

a convex function. m

PROPOSITION 3. Let f: [a,b] M 4 C R be a convez and invertible function

and let f=1 be its inverse.
(1) If f is increasing then f~' is concave on each interval I C A.

(2) If f is decreasing then f~! is convex on each interval I C A.

Proof. Let fi1 = f|(a,b). The restriction f; is monotone on (a,b). Let ¢ =
lim, o f(z) and d = lim,—p— f(z). It must be f(a) > c and f(b) > d.

If f is continuous at a or b, then for its inverse function on the interval f([a,b)),
respectively f((a,b]), Proposition 2 holds.

If f(a), f(b) > max{c,d}, then for f~! Proposition 2 holds on the interval
f(a,b).
(1) If f is increasing on (a,b), and f(a) = d, then f~! is concave on (c,d).

(2) Dually, if f is decreasing on (a,b), and f(b) = ¢, then f~! is convex on
(dyc]. m
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